【題目】已知圓,橢圓的短半軸長等于圓的半徑,且過右焦點的直線與圓相切于點

1)求橢圓的方程;

2)若動直線與圓相切,且與相交于兩點,求點到弦的垂直平分線距離的最大值.

【答案】12)最大值為.

【解析】

1)由條件知,,求出過右焦點的直線與圓相切于點直線方程,再利用點到直線的距離公式,可得出,從而,即可得橢圓的方程;

2)設點到弦的垂直平分線的距離為,

①若直線軸,則弦的垂直平分線為軸,所以,若直線軸,則弦的垂直平分線為軸,所以

②設,的中點坐標為,利用點差法求出,進而得出直線的方程為,再根據(jù)直線與圓相切,利用點到直線的距離公式,得出,從而得出弦的垂直平分線方程為,最后再利用點到直線的距離公式,即可求出點到弦的垂直平分線的距離,結合運用基本不等式求出距離的最大值.

解:(1)由條件知,所以,

設橢圓右焦點坐標為,

則過該點與圓相切于點的直線方程為:

,

化簡得:,

到直線的距離等于半徑1,即,

解得:,從而

所以橢圓C的方程為: .

2)設點到弦的垂直平分線的距離為,

①若直線軸,則弦的垂直平分線為軸,所以

若直線軸,則弦的垂直平分線為軸,所以

②設,的中點坐標為,

由點在橢圓上,得

-②得,,

,

所以直線的方程為:

化簡得:.

因為直線與圓相切,所以,

化簡得:,

又因為弦的垂直平分線方程為:,

.

所以,點到弦的垂直平分線的距離為:

.

當且僅當時,取等號.

所以點到弦的垂直平分線的距離最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列A: , ,… ().如果對小于()的每個正整數(shù)都有 ,則稱是數(shù)列A的一個“G時刻”.是數(shù)列A的所有“G時刻組成的集合.

(1)對數(shù)列A:-2,2,-1,1,3,寫出的所有元素;

(2)證明:若數(shù)列A中存在使得>,則

(3)證明:若數(shù)列A滿足- ≤1(n=2,3, …,N),的元素個數(shù)不小于 -.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為α為參數(shù)),將C上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>3倍,得曲線C1.以O為極點,x軸正半軸為極軸建立極坐標系.

1)求C1的極坐標方程

2)設M,NC1上兩點,若OMON,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點M到定點F1(2,0)F2(2,0)的距離之和為.

1)求動點M的軌跡C的方程;

2)設N(0,2),過點P(1,-2)作直線l,交曲線C于不同于N的兩點A,B,直線NANB的斜率分別為k1,k2,求k1k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:

合計

愛好

40

20

60

不愛好

20

30

50

合計

60

50

110

K2,

附表:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

10.828

參照附表,得到的正確結論是(

A.在犯錯誤的概率不超過0.1%的前提下,認為愛好該項運動與性別有關

B.在犯錯誤的概率不超過0.1%的前提下,認為愛好該項運動與性別無關

C.99%以上的把握認為愛好該項運動與性別有關

D.99%以上的把握認為愛好該項運動與性別無關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為,其中為參數(shù),在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,點P的極坐標為,直線l的極坐標方程為.

1)求曲線C的普通方程與直線l的直角坐標方程;

2)若Q是曲線C上的動點,M為線段PQ的中點,求點M到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設十人各拿一只水桶,同到水龍頭前打水,設水龍頭注滿第i(i=1,2,…,10)個人的水桶需Ti分鐘,假設Ti各不相同,當水龍頭只有一個可用時,應如何安排他()們的接水次序,使他()們的總的花費時間(包括等待時間和自己接水所花費的時間)最少(  )

A. Ti中最大的開始,按由大到小的順序排隊

B. Ti中最小的開始,按由小到大的順序排隊

C. 從靠近Ti平均數(shù)的一個開始,依次按取一個小的取一個大的的擺動順序排隊

D. 任意順序排隊接水的總時間都不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網站推出了關于生態(tài)文明建設進展情況的調查,大量的統(tǒng)計數(shù)據(jù)表明,參與調查者中關注此問題的約占80%.現(xiàn)從參與調查的人群中隨機選出人,并將這人按年齡分組:第1,第2,第3,第4 ,第5,得到的頻率分布直方圖如圖所示

(1) 求的值

(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取人,再從這人中隨機抽取人進行問卷調查,求在第1組已被抽到人的前提下,第3組被抽到人的概率;

(3)若從所有參與調查的人中任意選出人,記關注“生態(tài)文明”的人數(shù)為,求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為拋物線的焦點,點在拋物線上,且

1)求拋物線的方程;

2)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

同步練習冊答案