【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

5

﹣5

0


(1)請將上表數(shù)據(jù)補充完整,填寫在相應位置,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為( ,0),求θ的最小值.

【答案】
(1)解:根據(jù)表中已知數(shù)據(jù),解得A=5,ω=2,φ=﹣ .數(shù)據(jù)補全如下表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

5

0

﹣5

0

且函數(shù)表達式為f(x)=5sin(2x﹣


(2)解:由(Ⅰ)知f(x)=5sin(2x﹣ ),得g(x)=5sin(2x+2θ﹣ ).

因為y=sinx的對稱中心為(kπ,0),k∈Z.

令2x+2θ﹣ =kπ,解得x= ,k∈Z.

由于函數(shù)y=g(x)的圖象關于點( ,0)成中心對稱,令 = ,

解得θ= ,k∈Z.由θ>0可知,當K=1時,θ取得最小值


【解析】(1)根據(jù)表中已知數(shù)據(jù),解得A=5,ω=2,φ=﹣ .從而可補全數(shù)據(jù),解得函數(shù)表達式為f(x)=5sin(2x﹣ ).(2)由(Ⅰ)及函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律得g(x)=5sin(2x+2θ﹣ ).令2x+2θ﹣ =kπ,解得x= ,k∈Z.令 = ,解得θ= ,k∈Z.由θ>0可得解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠組織工人技能培訓,其中甲、乙兩名技工在培訓時進行的5次技能測試中的成績?nèi)鐖D莖葉圖所示. (Ⅰ)現(xiàn)要從中選派一人參加技能大賽,從這兩名技工的測試成績分析,派誰參加更合適;
(Ⅱ)若將頻率視為概率,對選派參加技能大賽的技工在今后三次技能大賽的成績進行預測,記這三次成績中高于85分的次數(shù)為ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}滿足 ,n∈N* . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{an}的前n項和為Sn , 若不等式Sn>kan﹣2對一切n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(理科答)已知數(shù)列{an}及等差數(shù)列{bn},若a1=3,an= an1+1(n≥2),a1=b2 , 2a3+a2=b4 ,
(1)證明數(shù)列{an﹣2}為等比數(shù)列;
(2)求數(shù)列{an}及數(shù)列{bn}的通項公式;
(3)設數(shù)列{anbn}的前n項和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,E是PC的中點,求證: (Ⅰ)PA∥平面EDB
(Ⅱ)AD⊥PC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知棱長為1的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是棱B1C1 , C1D1的中點. (Ⅰ)求AD1與EF所成角的大。
(Ⅱ)求AF與平面BEB1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學高三年級從甲、乙兩個班級各選出7名學生參加數(shù)學競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是83.
(1)求x和y的值;
(2)計算甲班7位學生成績的方差s2
(3)從成績在90分以上的學生中隨機抽取兩名學生,求甲班至少有一名學生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設F1 , F2分別是橢圓E: =1(a>b>0)的左、右焦點,過F1傾斜角為45°的直線l與E相交于A,B兩點,且|AB|= (Ⅰ)求E的離心率
(Ⅱ)設點P(0,﹣1)滿足|PA|=|PB|,求E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的最大值為1.
(1)求常數(shù)a的值;
(2)求使f(x)=0成立的x的取值集合.

查看答案和解析>>

同步練習冊答案