【題目】(理科答)已知數(shù)列{an}及等差數(shù)列{bn},若a1=3,an= an1+1(n≥2),a1=b2 , 2a3+a2=b4 ,
(1)證明數(shù)列{an﹣2}為等比數(shù)列;
(2)求數(shù)列{an}及數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{anbn}的前n項(xiàng)和為Tn , 求Tn

【答案】
(1)證明:a1=3,an= an1+1(n≥2),

an﹣2= (an1﹣2),

則數(shù)列{an﹣2}為首項(xiàng)為1,公比為 的等比數(shù)列


(2)解:(由(1)可得an﹣2=( n1,

即為an=2+( n1,

a1=b2=3,

2a3+a2=b4=2(2+ )+2+ =7,

可得等差數(shù)列{bn}的公差d= =2,

則bn=b2+(n﹣2)d=3+2(n﹣2)=2n﹣1


(3)證明:數(shù)列{anbn}的前n項(xiàng)和為Tn,

anbn=[2+( n1](2n﹣1)=2(2n﹣1)+(2n﹣1)( n1,

設(shè)Sn=1( 0+3( )+5( 2+…+(2n﹣1)( n1,

Sn=1( )+3( 2+5( 3+…+(2n﹣1)( n

相減可得, Sn=1+2[( )+( 2+( 3+…+( n1]﹣(2n﹣1)( n

=1+2[ ]﹣(2n﹣1)( n,

化簡(jiǎn)可得Sn=6﹣

則Tn=2 n(1+2n﹣1)+6﹣ =2n2+6﹣


【解析】(1)an= an1+1的兩邊減2,再由等比數(shù)列的定義即可得證;(2)運(yùn)用等比數(shù)列和等差數(shù)列的通項(xiàng)公式,計(jì)算即可得到;(3)求得anbn=[2+( n1](2n﹣1)=2(2n﹣1)+(2n﹣1)( n1 , 再由數(shù)列的求和方法:分組求和和錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理即可得到所求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種新產(chǎn)品投放市場(chǎng)的100天中,前40天價(jià)格呈直線上升,而后60天其價(jià)格呈直線下降,現(xiàn)統(tǒng)計(jì)出其中4天的價(jià)格如下表:

時(shí)間

第4天

第32天

第60天

第90天

價(jià)格(千元)

23

30

22

7

(Ⅰ)寫出價(jià)格f(x)關(guān)于時(shí)間x的函數(shù)關(guān)系式(x表示投放市場(chǎng)的第x天,x∈N*);
(Ⅱ)銷售量g(x)與時(shí)間x的函數(shù)關(guān)系式為 ,則該產(chǎn)品投放市場(chǎng)第幾天的銷售額最高?最高為多少千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}和{bn}(bn≠0,n∈N*),滿足a1=b1=1,anbn+1﹣an+1bn+bn+1bn=0
(1)令cn= ,證明數(shù)列{cn}是等差數(shù)列,并求{cn}的通項(xiàng)公式
(2)若bn=2n1 , 求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 的展開式各項(xiàng)系數(shù)和為M, 的展開式各項(xiàng)系數(shù)和為N,(x+1)n的展開式各項(xiàng)的系數(shù)和為P,且M+N﹣P=2016,試求 的展開式中:
(1)二項(xiàng)式系數(shù)最大的項(xiàng);
(2)系數(shù)的絕對(duì)值最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種汽車,購車費(fèi)用是10萬元,每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽車費(fèi)約為0.9萬元,年維修費(fèi)第一年是0.2萬元,以后逐年遞增0.2萬元,問這種汽車使用多少年時(shí),它的平均費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù) 的圖象,只需將函數(shù) 的圖象上所有的點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再向平行移動(dòng)個(gè)單位長度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

5

﹣5

0


(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫在相應(yīng)位置,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)θ(θ>0)個(gè)單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個(gè)對(duì)稱中心為( ,0),求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點(diǎn)( ,﹣ ),且離心率為 . (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)A(x1 , y1),B(x2 , y2)是橢圓C上的亮點(diǎn),且x1≠x2 , 點(diǎn)P(1,0),證明:△PAB不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有﹣段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎駑馬,二馬相逢,問:需日相逢.

查看答案和解析>>

同步練習(xí)冊(cè)答案