【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1,則數(shù)列{bn}的前1000項(xiàng)和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此試驗(yàn)重復(fù)n輪,第n輪的點(diǎn)數(shù)分別記為xn , yn , 如果點(diǎn)數(shù)滿足xn< ,則認(rèn)為第n輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束.
(Ⅰ)求第一輪闖關(guān)成功的概率;
(Ⅱ)如果第i輪闖關(guān)成功所獲的獎金數(shù)f(i)=10000× (單位:元),求某人闖關(guān)獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進(jìn)行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量X,求x的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體中,,分別為 棱,上的點(diǎn). 已知下列判斷:
①平面;②在側(cè)面上 的正投影是面積為定值的三角形;③在平面內(nèi)總存在與平面平行的直線;④平 面與平面所成的二面角(銳角)的大小與點(diǎn)的位置有關(guān),與點(diǎn)的位置無關(guān).
其中正確判斷的個數(shù)有
(A)1個 (B)2個 (C)3個 (D)4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是二次函數(shù),其函數(shù)圖像經(jīng)過(0,2),在時取得最小值1.
(1)求的解析式.
(2)求在[k,k+1]上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com