【題目】已知函數(shù);
(1)求函數(shù)f(x)的周期以及單調(diào)遞增區(qū)間;
(2)在給出的直角坐標(biāo)系中,請用五點作圖法畫出f(x)在區(qū)間[0,π]上的圖象.
【答案】解:(1)∵;
∴f(x)的周期T==π,由2kπ﹣≤2x﹣≤2kπ+,k∈Z,即可解得單調(diào)遞增區(qū)間為:[kπ﹣,kπ+],k∈Z,
(2)列表如下:
2x﹣ | ﹣ | |||||
x | 0 | π | ||||
y | ﹣ | 0 | 2 | 0 | ﹣2 | ﹣ |
對應(yīng)的圖象如下:
【解析】(1)根據(jù)周期公式可求周期,由三角函數(shù)的單調(diào)性的性質(zhì)即可求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)列表,描點,連線即可利用“五點作圖法”畫出函數(shù)y=f(x)在[0,π]上的圖象.
【考點精析】關(guān)于本題考查的五點法作函數(shù)y=Asin(ωx+φ)的圖象,需要了解描點法及其特例—五點作圖法(正、余弦曲線),三點二線作圖法(正、余切曲線)才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市文化部門為了了解本市市民對當(dāng)?shù)氐胤綉蚯欠裣矏,?5-65歲的人群中隨機(jī)抽樣了人,得到如下的統(tǒng)計表和頻率分布直方圖.
(1)寫出其中及和的值;
(2)若從第1,2,3,組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求抽取的2人年齡都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,空間幾何體中,四邊形是梯形,四邊形是矩形,且平面平面, , , 是線段上的動點.
(1)求證: ;
(2)試確定點的位置,使平面,并說明理由;
(3)在(2)的條件下,求空間幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓
(1)過點的圓的切線只有一條,求的值及切線方程;
(2)若過點且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 在和處取得極值,且,曲線在處的切線與直線垂直.
(Ⅰ)求的解析式;
(Ⅱ)證明關(guān)于的方程至多只有兩個實數(shù)根(其中是的導(dǎo)函數(shù), 是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , ,斜率為的直線過點,且和以為圓相切.
(1)求圓的方程;
(2)在圓上是否存在點,使得,若存在,求出所有的點的坐標(biāo);若不存在說明理由;
(3)若不過的直線與圓交于, 兩點,且滿足, , 的斜率依次為等比數(shù)列,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知一個圓過直線與圓的兩個交點,且面積最小,求此圓的方程;
(2)拋物線的頂點在原點,以橢圓的右焦點為焦點,過點的直線與拋物線有且僅有一個公共點,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com