如圖,在四棱錐中,⊥平面,的中點, 的中點,底面是菱形,對角線交于點

求證:(1)平面平面;
(2)平面⊥平面

(1)先利用線面平行的判定定理證明平面,平面,即得證
(2)先利用線面垂直的判定定理證明⊥平面,即得證

解析試題分析:(1)因為的中點,的中點,所以
平面,平面,所以平面               ……4分
同理可證,平面,又
所以,平面平面.                                            ……7分
(2)因為⊥平面,平面,所以           ……9分
因為底面是菱形,所以,又
所以⊥平面                                                  ……12分
平面,所以平面⊥平面.                       ……14分
考點:本小題主要考查線面平行和線面垂直的判定.
點評:要解決此類問題,要充分發(fā)揮空間想象能力,緊扣相應(yīng)的判定定理和性質(zhì)定理,定理中要求的條件要一一列舉出來,缺一不可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,是均以為斜邊的等腰直角三角形,,分別為,的中點,的中點,且平面.

(1)證明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,且AB=AD,BC=DC.

(1)求證:平面EFGH;
(2)求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四邊形中,對角線,,的重心,過點的直線分別交,沿折起,沿折起,正好重合于.

(Ⅰ) 求證:平面平面;
(Ⅱ)求平面與平面夾角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動點。

(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)當點E在何位置時,BD⊥AE?證明你的結(jié)論;
(Ⅲ)若點E為PC的中點,求二面角D-AE-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,平面平面,是等邊三角形,已知,

(Ⅰ)設(shè)上的一點,證明:平面平面;
(Ⅱ)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)在如圖的多面體中,⊥平面,,,,,的中點.

(Ⅰ) 求證:平面;
(Ⅱ) 求證:;
(Ⅲ) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,已知所在的平面,AB是⊙的直徑,,是⊙上一點,且,分別為中點。

(1)求證:平面;
(2)求證:;
(3)求三棱錐-的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖的直三棱柱中,,點的中點.

(1)求證:∥平面;
(2)求異面直線所成的角的余弦值;
(3)求直線與平面所成角的正弦值;

查看答案和解析>>

同步練習冊答案