(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動(dòng)點(diǎn)。

(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)當(dāng)點(diǎn)E在何位置時(shí),BD⊥AE?證明你的結(jié)論;
(Ⅲ)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大。

(Ⅰ);(Ⅱ)不論點(diǎn)E在何位置,都有BD⊥AE;(Ⅲ)

解析試題分析:(Ⅰ)解:由該四棱錐的三視圖可知,該四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,
側(cè)棱PC⊥底面ABCD,且PC="2."

----------------------------2分
(Ⅱ) 不論點(diǎn)E在PC上何位置,都有BD⊥AE---------------------------------------3分
證明如下:連結(jié)AC,∵ABCD是正方形
∴BD⊥AC ∵PC⊥底面ABCD 且平面 ∴BD⊥PC-----------5分
又∵∴BD⊥平面PAC 
∵不論點(diǎn)E在何位置,都有AE平面PAC 
∴不論點(diǎn)E在何位置,都有BD⊥AE ----------------------------------------------7分
(Ⅲ) 解法一:在平面DAE內(nèi)過(guò)點(diǎn)D作DG⊥AE于G,連結(jié)BG
∵CD="CB,EC=EC," ∴
∴ED="EB," ∵AD=AB ∴△EDA≌△EBA
∴BG⊥EA ∴為二面角D-EA-B的平面角--------------------------10分
∵BC⊥DE,   AD∥BC ∴AD⊥DE
在Rt△ADE中==BG
在△DGB中,由余弦定理得
=-----------------------12分

[解法二:以點(diǎn)C為坐標(biāo)原點(diǎn),CD所在的直線為x軸建立空間直角坐標(biāo)系如圖示:
,從
設(shè)平面ADE和平面ABE的法向量分別為
可得:
同理得:。令,則,
------10分
設(shè)二面角D-AE-B的平面角為,則 ∴------12分
考點(diǎn):錐體的體積公式;線面垂直的判定定理;線面垂直的性質(zhì)定理;二面角。
點(diǎn)評(píng):二面角的求法是立體幾何中的一個(gè)難點(diǎn)。我們解決此類(lèi)問(wèn)題常用的方法有兩種:①綜合法,綜合法的一般步驟是:一作二說(shuō)三求。②向量法,運(yùn)用向量法求二面角應(yīng)注意的是計(jì)算。很多同學(xué)都會(huì)應(yīng)用向量法求二面角,但結(jié)果往往求不對(duì),出現(xiàn)的問(wèn)題就是計(jì)算錯(cuò)誤。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

 是雙曲線 上一點(diǎn),、分別是雙曲線的左、右頂點(diǎn),直線的斜率之積為.

(1)求雙曲線的離心率;
(2)過(guò)雙曲線的右焦點(diǎn)且斜率為1的直線交雙曲線于兩點(diǎn),為坐標(biāo)原點(diǎn),為雙曲線上一點(diǎn),滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在△中,,,點(diǎn)上,.沿將△翻折成△,使平面平面;沿將△翻折成△,使平面平面

(Ⅰ)求證:平面
(Ⅱ)設(shè),當(dāng)為何值時(shí),二面角的大小為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平面AEB,,,,,G是BC的中點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知兩個(gè)正方形ABCD 和DCEF不在同一平面內(nèi),且平面ABCD ⊥平面DCEF,M,N分別為AB,DF的中點(diǎn)。

(1)求直線MN與平面ABCD所成角的正弦值;
(2)求異面直線ME與BN所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,⊥平面,的中點(diǎn), 的中點(diǎn),底面是菱形,對(duì)角線,交于點(diǎn)

求證:(1)平面平面;
(2)平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,四棱錐P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E為PD的中點(diǎn).

(1) 求證:CE∥平面PAB;
(2) 求PA與平面ACE所成角的大;
(3) 求二面角E-AC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點(diǎn),F(xiàn)在棱AC上,且

(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF;
(3)若MBD的中點(diǎn),問(wèn)AC上是否存在一點(diǎn)N,使MN∥平面DEF?若存在,說(shuō)明點(diǎn)N的位置;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分別為PC、PB的中點(diǎn).

(Ⅰ)求證:PB平面ADMN;
(Ⅱ)求四棱錐P-ADMN的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案