(本小題滿分12分)
如圖,已知所在的平面,AB是⊙的直徑,,是⊙上一點(diǎn),且,分別為中點(diǎn)。

(1)求證:平面;
(2)求證:;
(3)求三棱錐-的體積。

(1)借助于三角形的中位線來分析得到,然后結(jié)合線面的判定定理得到結(jié)論。
(2)根據(jù)已知中,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e0/3/ieu9n1.png" style="vertical-align:middle;" />,那么可知,進(jìn)而結(jié)合性質(zhì)定理得到結(jié)論。
(3)1

解析試題分析:證明:(1)在中,分別為中點(diǎn),,
,
(2),,是⊙的直徑,
,又。
,
(3)在中,,的面積,

考點(diǎn):空間中點(diǎn)線面的位置關(guān)系
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于空間中的線面平行和線面垂直的判定定理和性質(zhì)定理的靈活運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
點(diǎn).

(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,⊥平面,的中點(diǎn), 的中點(diǎn),底面是菱形,對(duì)角線,交于點(diǎn)

求證:(1)平面平面;
(2)平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點(diǎn)。

(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點(diǎn),F(xiàn)在棱AC上,且

(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF;
(3)若MBD的中點(diǎn),問AC上是否存在一點(diǎn)N,使MN∥平面DEF?若存在,說明點(diǎn)N的位置;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACDAC=AD=CD=DE=2,AB=1,FCD的中點(diǎn).

(Ⅰ)求證:AF⊥平面CDE
(Ⅱ)求面ACD和面BCE所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分6分.
如圖已知四棱錐的底面是邊長(zhǎng)為6的正方形,側(cè)棱的長(zhǎng)為8,且垂直于底面,點(diǎn)分別是的中點(diǎn).求

(1)異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點(diǎn),若EG//面ABCD.

(1)求證:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
四棱錐,面⊥面.側(cè)面是以為直角頂點(diǎn)的等腰直角三角形,底面為直角梯形,,,,上一點(diǎn),且.

(Ⅰ)求證
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案