【題目】已知一元二次不等式x2﹣ax﹣b<0的解集是{x|1<x<3}.
(1)求實數(shù)a,b的值;
(2)解不等式 >1.

【答案】
(1)解:因為不等式 一元二次不等式x2﹣ax﹣b<0的解集是{x|1<x<3},

∴1和3是x2﹣ax﹣b=0的實數(shù)根,∴1+3=a,1×3=﹣b,即 a=4,b=﹣3


(2)解:不等式 >1,即為 >1,即 >0,即(x﹣3)(x+7)>0,

∴x>3,或 x<﹣7,故原不等式的解集為{x|x>3,或 x<﹣7}


【解析】(1)由題意可得1和3是x2﹣ax﹣b=0的實數(shù)根,利用韋達定理求得 a和b的值.(2)不等式即 >1,即 >0,即(x﹣3)(x+7)>0,解一元二次不等式,求得x的范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分).已知函數(shù)在點處的切線方程為

(1)求的值;

(2)設為自然對數(shù)的底數(shù)),求函數(shù)在區(qū)間上的最大值;

(3)證明:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,過 的直線l與橢圓交于A,B兩點,過Q(x0 , 0)(|x0|<a)的直線l'與橢圓交于M,N兩點.

(1)當l的斜率是k時,用a,b,k表示出|PA||PB|的值;
(2)若直線l,l'的傾斜角互補,是否存在實數(shù)x0 , 使 為定值,若存在,求出該定值及x0 , 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有次水下考古活動中,潛水員需潛入水深為30米的水底進行作業(yè),其用氧量包含以下三個方面:①下潛時,平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時,速度為每分鐘米,每分鐘用氧量為0.2升;設潛水員在此次考古活動中的總用氧量為升;

(1)將表示為的函數(shù);

(2)若,求總用氧量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】社會在對全日制高中的教學水平進行評價時,常常將被清華北大錄取的學生人數(shù)作為衡量的標準之一.重慶市教委調研了某中學近五年(2013年-2017年)高考被清華北大錄取的學生人數(shù),制作了如下所示的表格(設2013年為第一年).

年份(第年)

人數(shù)(人)

(1)試求人數(shù)關于年份的回歸直線方程;

(2)在滿足(1)的前提之下,估計2018年該中學被清華北大錄取的人數(shù)(精確到個位);

(3)教委準備在這五年的數(shù)據(jù)中任意選取兩年作進一步研究,求被選取的兩年恰好不相鄰的概率.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市疾控中心流感監(jiān)測結果顯示,自月起,該市流感活動一度出現(xiàn)上升趨勢,尤其是月以來,呈現(xiàn)快速增長態(tài)勢,截止目前流感病毒活動度仍處于較高水平,為了預防感冒快速擴散,某校醫(yī)務室采取積極方式,對感染者進行短暫隔離直到康復假設某班級已知位同學中有位同學被感染,需要通過化驗血液來確定感染的同學,血液化驗結果呈陽性即為感染,呈陰性即未被感染.下面是兩種化驗方法: 方案甲:逐個化驗,直到能確定感染同學為止;

方案乙:先任取個同學,將它們的血液混在一起化驗,若結果呈陽性則表明感染同學為這位中的位,后再逐個化驗,直到能確定感染同學為止;若結果呈陰性則在另外位同學中逐個檢測;

(1)求依方案甲所需化驗次數(shù)等于方案乙所需化驗次數(shù)的概率;

(2)表示依方案甲所需化驗次數(shù),表示依方案乙所需化驗次數(shù),假設每次化驗的費用都相同,請從經濟角度考慮那種化驗方案最佳.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a,b為正數(shù),給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x+ +3,x∈N* , 在x=5時取到最小值,則實數(shù)a的所有取值的集合為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為Sn,若Sm1=-2,Sm=0,Sm1=3,則m=(  )

A. 5 B. 4 C. 3 D. 6

【答案】A

【解析】

根據(jù)數(shù)列前n項和的定義得到的值,再由數(shù)列的前n項和的公式得到,進而求得首項,由=2,解得m.

Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,則,

根據(jù)等差數(shù)列的前n項和公式得到Sm,得到首項為-2,故=2,解得m=5.

故答案為:A.

【點睛】

這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知的關系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等。

型】單選題
束】
11

【題目】已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

查看答案和解析>>

同步練習冊答案