已知三角形三個頂點(diǎn)是,,,
(1)求邊上的中線所在直線方程;
(2)求邊上的高所在直線方程.
(1)(2)
解析試題分析:本題第(1)問,由中點(diǎn)公式得到中點(diǎn),再求出邊上的中線所在直線的斜率,然后由直線的點(diǎn)斜式方程求出邊上的中線所在直線方程;第(2)問,先由和兩點(diǎn)求出直線BC的斜率,由于邊與高垂直,則由兩直線垂直的結(jié)論求出高所在直線的斜率,再結(jié)合點(diǎn),由直線的點(diǎn)斜式方程求出高所在直線方程。
解:的中點(diǎn)
邊上的中線所在的直線方程為
,即
,
邊上的高所在的直線的方程為
即
考點(diǎn):直線的方程.
點(diǎn)評:本題考查直線方程的求法,是基礎(chǔ)題.解題時要認(rèn)真審題,注意兩點(diǎn)式方程和點(diǎn)斜式方程的靈活運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線經(jīng)過兩點(diǎn)(2,1),(6,3)
(1)求直線的方程
(2)圓C的圓心在直線上,并且與軸相切于點(diǎn)(2,0), 求圓C的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知圓和圓.
(1)若直線過點(diǎn),且被圓截得的弦長為,求直線的方程;
(2)設(shè)為平面上的點(diǎn),滿足:存在過點(diǎn)的無窮多對互相垂直的直線和,它們分別與圓和圓相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,分別是橢圓的左、右焦點(diǎn),關(guān)于直線的對稱點(diǎn)是圓的一條直徑的兩個端點(diǎn).
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)過點(diǎn)的直線被橢圓和圓所截得的弦長分別為,.當(dāng)最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:設(shè)分別為曲線和上的點(diǎn),把兩點(diǎn)距離的最小值稱為曲線到的距離.
(1)求曲線到直線的距離;
(2)若曲線到直線的距離為,求實(shí)數(shù)的值;
(3)求圓到曲線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,過點(diǎn)P(1,0)作曲線C:的切線,切點(diǎn)為,設(shè)點(diǎn)在軸上的投影是點(diǎn);又過點(diǎn)作曲線的切線,切點(diǎn)為,設(shè)在軸上的投影是;………;依此下去,得到一系列點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
(1)求直線的方程;
(2)求數(shù)列的通項(xiàng)公式;
(3)記到直線的距離為,求證:時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的頂點(diǎn),邊上的中線所在的直線方程為,邊上的高所在直線的方程為。
(1)求的頂點(diǎn)、的坐標(biāo);
(2)若圓經(jīng)過不同的三點(diǎn)、、,且斜率為的直線與圓相切于點(diǎn),求圓的方程;
(3)問圓是否存在斜率為的直線,使被圓截得的弦為,以為直徑的圓經(jīng)過原點(diǎn).若存在,寫出直線的方程;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com