【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(3)若正實(shí)數(shù)滿足,證明: .
【答案】(1);(2)見解析.
【解析】【試題分析】(1)依據(jù)題設(shè)條件運(yùn)用導(dǎo)數(shù)的幾何意義求解;(2)先將不等式進(jìn)行轉(zhuǎn)化,再構(gòu)造函數(shù)運(yùn)用導(dǎo)數(shù)進(jìn)行求解;(3)先將問題進(jìn)行等價(jià)轉(zhuǎn)化再構(gòu)造函數(shù)運(yùn)用導(dǎo)數(shù)知識(shí)求解:
(1)因?yàn)?/span>, , ,
所以切線方程為,即.
(2)令,
所以 ,
當(dāng)時(shí),因?yàn)?/span>,所以,所以是上的遞增函數(shù),
又因?yàn)?/span>,所以關(guān)于的不等式不能恒成立.
當(dāng)時(shí), ,
令,得,所以當(dāng)時(shí), ;當(dāng)時(shí), ,
因此函數(shù)在上是增函數(shù),在上是減函數(shù),故函數(shù)的最大值為.
令,
則在上是減函數(shù),
因?yàn)?/span>, ,
所以當(dāng)時(shí), ,所以整數(shù)的最小值為2.
(3)由,得
,
從而,
令,則由,得,可知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
所以,所以,又,
因此成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了制定合理的節(jié)電方案,供電局對(duì)居民用電情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照,分成9組,制成了如圖所示的頻率直方圖.
(1)求直方圖中的值并估計(jì)居民月均用電量的中位數(shù);
(2)從樣本里月均用電量不低于700度的用戶中隨機(jī)抽取4戶,用表示月均用電量不低于800度的用戶數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)在處取得極值,且在點(diǎn)處的切線與直線平行.
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間及極值。
(3)求函數(shù)在的最值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班(人數(shù)均為20人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺性一致),數(shù)學(xué)期終考試成績(jī)莖葉圖如下:
(1)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
附:參考公式及數(shù)據(jù)
(2)從兩個(gè)班數(shù)學(xué)成績(jī)不低于90分的同學(xué)中隨機(jī)抽取3名,設(shè)為抽取成績(jī)不低于95分同學(xué)人數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和直線: ,橢圓的離心率,坐標(biāo)原點(diǎn)到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點(diǎn),若直線過點(diǎn)且與橢圓相交于兩點(diǎn),試判斷是否存在直線,使以為直徑的圓過點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)調(diào)查了80位學(xué)生,以研究學(xué)生中愛好羽毛球運(yùn)動(dòng)與性別的關(guān)系,得到下面的列聯(lián)表:
愛好 | 不愛好 | 合計(jì) | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合計(jì) | 30 | 50 | 80 |
(Ⅰ)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查了本校的3名學(xué)生,設(shè)這3人中愛好羽毛球運(yùn)動(dòng)的人數(shù)為,求 的分布列,數(shù)學(xué)期望及方差;
(Ⅱ)根據(jù)表中數(shù)據(jù),能否有充分證據(jù)判斷愛好羽毛球運(yùn)動(dòng)與性別有關(guān)?若有,有多大把握?
0.500 | 0.100 | 0.050 | 0.010 | |
| 0.455 | 2.706 | 3.841 | 6.635 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)在處取得極值,且在點(diǎn)處的切線與直線平行.
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間及極值。
(3)求函數(shù)在的最值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ( )的左右焦點(diǎn)分別為, ,離心率為,點(diǎn)在橢圓上, , ,過與坐標(biāo)軸不垂直的直線與橢圓交于, 兩點(diǎn), 為, 的中點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn),且,求直線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圓錐的軸截面為等腰直角△SAB,Q為底面圓周上一點(diǎn).
(1)若QB的中點(diǎn)為C,OH⊥SC,求證:OH⊥平面SBQ;
(2)如果∠AOQ=60°,QB=2,求此圓錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com