【題目】在疫情這一特殊時(shí)期,教育行政部門部署了停課不停學(xué)的行動,全力幫助學(xué)生在線學(xué)習(xí).復(fù)課后進(jìn)行了摸底考試,某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生這次摸底考試的數(shù)學(xué)成績與在線學(xué)習(xí)數(shù)學(xué)時(shí)長之間的相關(guān)關(guān)系,對在校高三學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查.知道其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長是不超過1小時(shí)的,得到了如下的等高條形圖:

1)是否有的把握認(rèn)為高三學(xué)生的這次摸底考試數(shù)學(xué)成績與其在線學(xué)習(xí)時(shí)長有關(guān);

2)將頻率視為概率,從全校高三學(xué)生這次數(shù)學(xué)成績超過120分的學(xué)生中隨機(jī)抽取10人,求抽取的10人中每天在線學(xué)習(xí)時(shí)長超過1小時(shí)的人數(shù)的數(shù)學(xué)期望與方差.

【答案】1)沒有的把握認(rèn)為高三學(xué)生的這次摸底成績與其在線學(xué)習(xí)時(shí)長有關(guān);(2,

【解析】

1)根據(jù)題目數(shù)據(jù)列出列聯(lián)表,計(jì)算,與臨界值比較即可得出結(jié)論;

2)由在線時(shí)長超過1小時(shí)的頻率代替概率,可知在線時(shí)長超過1小時(shí)的人數(shù),根據(jù)二項(xiàng)分布求出期望和方差.

1)依題意,得列聯(lián)表

在線學(xué)習(xí)時(shí)長

數(shù)學(xué)成績

合計(jì)

小時(shí)

15

10

25

小時(shí)

5

15

20

合計(jì)

20

25

45

∴沒有的把握認(rèn)為高三學(xué)生的這次摸底成績與其在線學(xué)習(xí)時(shí)長有關(guān);

2)從上述列聯(lián)表中可以看出:

這次數(shù)學(xué)成績超過120分的學(xué)生中每天在線學(xué)習(xí)時(shí)長超過1小時(shí)的頻率為,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020312日,國務(wù)院新聞辦公室發(fā)布會重點(diǎn)介紹了改革開放40年,特別是黨的十八大以來我國脫貧攻堅(jiān)、精準(zhǔn)扶貧取得的顯著成績,這些成績?yōu)槿婷撠毘醪浇ǔ尚】瞪鐣於藞?jiān)實(shí)的基礎(chǔ).下圖是統(tǒng)計(jì)局公布的2010年~2019年年底的貧困人口和貧困發(fā)生率統(tǒng)計(jì)表.則下面結(jié)論正確的是(

(年底貧困人口的線性回歸方程為(其中年份-2019),貧困發(fā)生率的線性回歸方程為(其中年份-2009)

A.2010年~2019年十年間脫貧人口逐年減少,貧困發(fā)生率逐年下降

B.2012~2019年連續(xù)八年每年減貧超過1000萬,且2019年貧困發(fā)生率最低

C.2010年~2019年十年間超過1.65億人脫貧,其中2015年貧困發(fā)生率低于6

D.根據(jù)圖中趨勢線可以預(yù)測,到2020年底我國將實(shí)現(xiàn)全面脫貧

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】法國數(shù)學(xué)家龐加是個(gè)喜歡吃面包的人,他每天都會購買一個(gè)面包,面包師聲稱自己出售的每個(gè)面包的平均質(zhì)量是1000,上下浮動不超過50.這句話用數(shù)學(xué)語言來表達(dá)就是:每個(gè)面包的質(zhì)量服從期望為1000,標(biāo)準(zhǔn)差為50的正態(tài)分布.

1)假設(shè)面包師的說法是真實(shí)的,從面包師出售的面包中任取兩個(gè),記取出的兩個(gè)面包中質(zhì)量大于1000的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望;

2)作為一個(gè)善于思考的數(shù)學(xué)家,龐加萊每天都會將買來的面包稱重并記錄,25天后,得到數(shù)據(jù)如下表,經(jīng)計(jì)算25個(gè)面包總質(zhì)量為24468.龐加萊購買的25個(gè)面包質(zhì)量的統(tǒng)計(jì)數(shù)據(jù)(單位:

981

972

966

992

1010

1008

954

952

969

978

989

1001

1006

957

952

969

981

984

952

959

987

1006

1000

977

966

盡管上述數(shù)據(jù)都落在上,但龐加菜還是認(rèn)為面包師撒謊,根據(jù)所附信息,從概率角度說明理由

附:

,從X的取值中隨機(jī)抽取25個(gè)數(shù)據(jù),記這25個(gè)數(shù)據(jù)的平均值為Y,則由統(tǒng)計(jì)學(xué)知識可知:隨機(jī)變量

,則,;

通常把發(fā)生概率在0.05以下的事件稱為小概率事件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點(diǎn),點(diǎn)是曲線上的動點(diǎn), 的中點(diǎn).

(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)已知直線軸的交點(diǎn)為,與曲線的交點(diǎn)為,若的中點(diǎn)為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求的普通方程和曲線C的直角坐標(biāo)方程;

2)求曲線C上的點(diǎn)到距離的最大值及該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱的所有棱長均為2,

(Ⅰ)證明:;

(Ⅱ)若平面平面,的中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過個(gè)國家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國家或地區(qū)直接宣布封國封城,隨著國外部分活動進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:

企業(yè)成立年份

2019

2018

2017

2016

2015

企業(yè)成立年限

1

2

3

4

5

倒閉企業(yè)數(shù)量(萬家)

5.23

4.70

3.72

3.12

2.42

倒閉企業(yè)所占比例

21.8%

19.6%

15.5%

13.0%

10.1%

根據(jù)上表,給出兩種回歸模型:

模型①:建立曲線型回歸模型,求得回歸方程為;

模型②:建立線性回歸模型.

1)根據(jù)所給的統(tǒng)計(jì)量,求模型②中關(guān)于的回歸方程;

2)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測年成立的企業(yè)中倒閉企業(yè)所占比例(結(jié)果保留整數(shù)).

回歸模型

模型①

模型②

回歸方程

參考公式:;.

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,斜率為的直線交拋物線兩點(diǎn),當(dāng)直線過點(diǎn)時(shí),以為直徑的圓與直線相切.

(1)求拋物線的方程;

(2)與平行的直線交拋物線于,兩點(diǎn),若平行線,之間的距離為,且的面積是面積的O為坐標(biāo)原點(diǎn)),求的方程.

查看答案和解析>>

同步練習(xí)冊答案