【題目】法國數(shù)學(xué)家龐加是個喜歡吃面包的人,他每天都會購買一個面包,面包師聲稱自己出售的每個面包的平均質(zhì)量是1000,上下浮動不超過50.這句話用數(shù)學(xué)語言來表達(dá)就是:每個面包的質(zhì)量服從期望為1000,標(biāo)準(zhǔn)差為50的正態(tài)分布.
(1)假設(shè)面包師的說法是真實的,從面包師出售的面包中任取兩個,記取出的兩個面包中質(zhì)量大于1000的個數(shù)為,求的分布列和數(shù)學(xué)期望;
(2)作為一個善于思考的數(shù)學(xué)家,龐加萊每天都會將買來的面包稱重并記錄,25天后,得到數(shù)據(jù)如下表,經(jīng)計算25個面包總質(zhì)量為24468.龐加萊購買的25個面包質(zhì)量的統(tǒng)計數(shù)據(jù)(單位:)
981 | 972 | 966 | 992 | 1010 | 1008 | 954 | 952 | 969 | 978 |
989 | 1001 | 1006 | 957 | 952 | 969 | 981 | 984 | 952 | 959 |
987 | 1006 | 1000 | 977 | 966 |
盡管上述數(shù)據(jù)都落在上,但龐加菜還是認(rèn)為面包師撒謊,根據(jù)所附信息,從概率角度說明理由
附:
①若,從X的取值中隨機(jī)抽取25個數(shù)據(jù),記這25個數(shù)據(jù)的平均值為Y,則由統(tǒng)計學(xué)知識可知:隨機(jī)變量
②若,則,,;
③通常把發(fā)生概率在0.05以下的事件稱為小概率事件.
【答案】(1)分布列見解析;期望為1(個)(2)詳見解析
【解析】
(1)由題意知,的所有可能取值為0,1,2.可求得;;.從而可求得的分布列和其數(shù)學(xué)期望.
(2)記面包師制作的每個面包的質(zhì)量為隨機(jī)變量X.假設(shè)面包師沒有撒謊,則.由附①,從X的取值中隨機(jī)抽取25個數(shù)據(jù),記這25個數(shù)據(jù)的平均值為Y,則.可求得這25個數(shù)據(jù)的平均值為,而由由附②數(shù)據(jù)知,,由附③知,事件“”為小概率事件,可得結(jié)論.
(1)由題意知,的所有可能取值為0,1,2.
;;
.所以的分布列為:
0 | 1 | 2 | |
P |
所以(個).
(2)記面包師制作的每個面包的質(zhì)量為隨機(jī)變量X.
假設(shè)面包師沒有撒謊,則.
根據(jù)附①,從X的取值中隨機(jī)抽取25個數(shù)據(jù),記這25個數(shù)據(jù)的平均值為Y,
則.
龐加萊記錄的25個面包質(zhì)量,相當(dāng)于從X的取值中隨機(jī)抽取了25個數(shù)據(jù),
這25個數(shù)據(jù)的平均值為,
由附②數(shù)據(jù)知,,
由附③知,事件“”為小概率事件,
所以“假設(shè)面包師沒有撒謊”有誤,
所以龐加萊認(rèn)為面包師撒謊.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)結(jié)構(gòu)調(diào)整和方式轉(zhuǎn)變,社會對高質(zhì)量人才的需求越來越大,因此考研現(xiàn)象在我國不斷升溫.某大學(xué)一學(xué)院甲、乙兩個本科專業(yè),研究生的報考和錄取情況如下表,則
性別 | 甲專業(yè)報考人數(shù) | 乙專業(yè)報考人數(shù) | 性別 | 甲專業(yè)錄取率 | 乙專業(yè)錄取率 | |
男 | 100 | 400 | 男 | |||
女 | 300 | 100 | 女 |
A.甲專業(yè)比乙專業(yè)的錄取率高B.乙專業(yè)比甲專業(yè)的錄取率高
C.男生比女生的錄取率高D.女生比男生的錄取率高
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們打印用的A4紙的長與寬的比約為,之所以是這個比值,是因為把紙張對折,得到的新紙的長與寬之比仍約為,紙張的形狀不變.已知圓柱的母線長小于底面圓的直徑長(如圖所示),它的軸截面ABCD為一張A4紙,若點E為上底面圓上弧AB的中點,則異面直線DE與AB所成的角約為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中,是自然對數(shù)的底數(shù).
(1)若在上存在兩個極值點,求的取值范圍;
(2)若,,函數(shù)與函數(shù)的圖象交于,,,,且線段的中點為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】臺球運動已有五、六百年的歷史,參與者用球桿在臺上擊球.若和光線一樣,臺球在球臺上碰到障礙物后也遵從反射定律如圖,有一張長方形球臺ABCD,,現(xiàn)從角落A沿角的方向把球打出去,球經(jīng)2次碰撞球臺內(nèi)沿后進(jìn)入角落C的球袋中,則的值為( )
A.B.C.1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:
(1)證明:平面平面
(2)求平面與平面所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是的導(dǎo)函數(shù),討論的單調(diào)性;
(2)若(是自然對數(shù)的底數(shù)),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在疫情這一特殊時期,教育行政部門部署了“停課不停學(xué)”的行動,全力幫助學(xué)生在線學(xué)習(xí).復(fù)課后進(jìn)行了摸底考試,某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生這次摸底考試的數(shù)學(xué)成績與在線學(xué)習(xí)數(shù)學(xué)時長之間的相關(guān)關(guān)系,對在校高三學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查.知道其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時長是不超過1小時的,得到了如下的等高條形圖:
(1)是否有的把握認(rèn)為“高三學(xué)生的這次摸底考試數(shù)學(xué)成績與其在線學(xué)習(xí)時長有關(guān)”;
(2)將頻率視為概率,從全校高三學(xué)生這次數(shù)學(xué)成績超過120分的學(xué)生中隨機(jī)抽取10人,求抽取的10人中每天在線學(xué)習(xí)時長超過1小時的人數(shù)的數(shù)學(xué)期望與方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線不過原點且不平行于坐標(biāo)軸,與有兩個交點,,線段的中點為.
(1)若,點在橢圓上,、分別為橢圓的兩個焦點,求的范圍;
(2)若過點,射線與橢圓交于點,四邊形能否為平行四邊形?若能,求此時直線斜率;若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com