精英家教網 > 高中數學 > 題目詳情

若方程ax2+ay2-4(a-1)x+4y=0表示圓,求實數a的取值范圍,并求出半徑最小的圓的方程.

a≠0,半徑最小的圓的方程為(x-1)2+(y+1)2=2.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知圓C過點P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關于直線x+y+2=0對稱.
(1)求圓C的方程;
(2)設Q為圓C上的一個動點,求的最小值;
(3)過點P作兩條相異直線分別與圓C相交于A,B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OP和AB是否平行?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求證:不論m取什么實數,直線l與圓C恒交于兩點;
(2)求直線被圓C截得的弦長最小時直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M、N均在直線x=5上.圓弧C1的圓心是坐標原點O,半徑為r1=13;圓弧C2過點A(29,0).

(1)求圓弧C2所在圓的方程;
(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由;
(3)已知直線l:x-my-14=0與曲線C交于E、F兩點,當EF=33時,求坐標原點O到直線l的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于.求動點M的軌跡方程,并說明它表示什么.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓.
(1)已知不過原點的直線與圓相切,且在軸,軸上的截距相等,求直線的方程;
(2)求經過原點且被圓截得的線段長為2的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓的圓心與點關于直線對稱,直線與圓相交于兩點,且,求圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求圓心在拋物線x2=4y上,且與直線x+2y+1=0相切的面積最小的圓
的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓,設點B,C是直線上的兩點,它們的橫坐標分別是,點P在線段BC上,過P點作圓M的切線PA,切點為A
(1)若,求直線的方程;
(2)經過三點的圓的圓心是,求線段(為坐標原點)長的最小值

查看答案和解析>>

同步練習冊答案