年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若方程ax2+ay2-4(a-1)x+4y=0表示圓,求實(shí)數(shù)a的取值范圍,并求出半徑最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓O1的方程為x2+(y+1)2=6,圓O2的圓心坐標(biāo)為(2,1).若兩圓相交于A,B兩點(diǎn),且|AB|=4,求圓O2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
AB是圓O的直徑,D為圓O上一點(diǎn),過(guò)D作圓O的切線交AB延長(zhǎng)線于點(diǎn)C,若DA=DC,求證:AB=2BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知?jiǎng)訄A與直線相切且與圓:外切。
(1)求圓心的軌跡方程;
(2)過(guò)定點(diǎn)作直線交軌跡于兩點(diǎn),是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),求證:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:x2+y2+x-6y+m=0與直線l:x+2y-3=0.
(1)若直線l與圓C沒(méi)有公共點(diǎn),求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,圓O與離心率為的橢圓T:()相切于點(diǎn)M。
⑴求橢圓T與圓O的方程;
⑵過(guò)點(diǎn)M引兩條互相垂直的兩直線、與兩曲線分別交于點(diǎn)A、C與點(diǎn)B、D(均不重合)。
①若P為橢圓上任一點(diǎn),記點(diǎn)P到兩直線的距離分別為、,求的最大值;
②若,求與的方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com