如圖,在平面直角坐標(biāo)系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點(diǎn)M、N均在直線x=5上.圓弧C1的圓心是坐標(biāo)原點(diǎn)O,半徑為r1=13;圓弧C2過點(diǎn)A(29,0).

(1)求圓弧C2所在圓的方程;
(2)曲線C上是否存在點(diǎn)P,滿足PA=PO?若存在,指出有幾個(gè)這樣的點(diǎn);若不存在,請(qǐng)說明理由;
(3)已知直線l:x-my-14=0與曲線C交于E、F兩點(diǎn),當(dāng)EF=33時(shí),求坐標(biāo)原點(diǎn)O到直線l的距離.

(1)x2+y2-28x-29=0.(2)P不存在(3)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的方程為,過點(diǎn)M(2,4)作圓C的兩條切線,切點(diǎn)分別為A,B,
直線AB恰好經(jīng)過橢圓T:(a>b>0)的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)已知直線l:y=kx+(k>0)與橢圓T相交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),
求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以為圓心的圓與直線相切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
求:(1)求圓的方程;
(2)設(shè)直線與圓相交于兩點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實(shí)數(shù),使得過點(diǎn)的直線垂直平分弦?
若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓滿足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)的比為3∶1;③圓心到直線l:x-2y=0的距離為,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過兩點(diǎn)A(1,4)、B(3,2)且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程,并判斷點(diǎn)P(2,4)與圓的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若方程ax2+ay2-4(a-1)x+4y=0表示圓,求實(shí)數(shù)a的取值范圍,并求出半徑最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O1的方程為x2+(y+1)2=6,圓O2的圓心坐標(biāo)為(2,1).若兩圓相交于A,B兩點(diǎn),且|AB|=4,求圓O2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓Cx2y2x-6ym=0與直線lx+2y-3=0.
(1)若直線l與圓C沒有公共點(diǎn),求m的取值范圍;
(2)若直線l與圓C相交于PQ兩點(diǎn),O為原點(diǎn),且OPOQ,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案