【題目】在平面直角坐標系中,直線的參數(shù)方程為(其中為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,并取相同的單位長度,曲線的極坐標方程為

(1)求直線的普通方程和曲線的直角坐標方程;

(2)過點作直線的垂線交曲線兩點,求.

【答案】(1),; (2)16.

【解析】

1)對直線的參數(shù)方程消參得,利用即可將化為,問題得解。

2)利用已知即可求得過點的直線的參數(shù)方程為:,聯(lián)立直線參數(shù)方程與曲線的普通方程可得:,結合韋達定理及直線參數(shù)方程中參數(shù)的幾何意義即可得解。

1)直線的參數(shù)方程為(其中為參數(shù))

消去可得:,

,得.

2)過點與直線垂直的直線的參數(shù)方程為:t為參數(shù)),代入可得

M,N對應的參數(shù)為,,則,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)當時,求不等式的解集;

(2)若不等式的解集為空集,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與直線相交于,兩點,為拋物線的焦點,若,則的中點的橫坐標為( )

A. B. 3C. 5D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】鯉魚是中國五千年文化傳承的載體之一,它既是拼搏進取、敢于突破自我、敢于冒險奮進精神的載體,又是富裕、吉慶、幸運的美好象征.某水產(chǎn)養(yǎng)殖研究所為發(fā)揚傳統(tǒng)文化,準備進行“中國紅鯉”和“中華彩鯉”雜交育種實驗.研究所對200尾中國紅鯉和160尾中華彩鯉幼苗進行2個月培育后,將根據(jù)體長分別選擇生長快的10尾中國紅鯉和8尾中華彩鯉作為種魚進一步培育.為了解培育2個月后全體幼魚的體長情況,按照品種進行分層抽樣,其中共抽取40尾中國紅鯉的體長數(shù)據(jù)(單位:)如下:

5

6

7

7.5

8

8.4

4

3.5

4.5

4.3

5

4

3

2.5

4

1.6

6

6.5

5.5

5.7

3.1

5.2

4.4

5

6.4

3.5

7

4

3

3.4

6.9

4.8

5.6

5

5.6

6.5

3

6

7

6.6

(1)根據(jù)以上樣本數(shù)據(jù)推斷,若某尾中國紅鯉的體長為,它能否被選為種魚?說明理由;

(2)通過計算得到中國紅鯉樣本數(shù)據(jù)平均值為,中華彩鯉樣本數(shù)據(jù)平均值為,求所有樣本數(shù)據(jù)的平均值;

(3)如果將8尾中華彩鯉種魚隨機兩兩組合,求體長最長的2尾組合到一起的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系,直線過點,且傾斜角為,以為極點,軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為.

(1)求直線的參數(shù)方程和圓的標準方程;

(2)設直線與圓交于、兩點,若,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線與拋物線交于,兩點,且.

(1)求的方程;

(2)試問:在軸的正半軸上是否存在一點,使得的外心在上?若存在,求的坐標;若不存在,請說明理由..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的鍥體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”(已知1丈為10尺)該鍥體的三視圖如圖所示,則該鍥體的體積為( )

A. 12000立方尺B. 11000立方尺

C. 10000立方尺D. 9000立方尺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點到其準線的距離為.

(1)求拋物線的方程;

(2)設直線與拋物線相交于兩點,問拋物線上是否存在點,使得是正三角形?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓柱,底面半徑為1,高為2,是圓柱的一個軸截面,動點從點出發(fā)沿著圓柱的側面到達點,其路徑最短時在側面留下的曲線記為:將軸截面繞著軸,逆時針旋轉 角到位置,邊與曲線相交于點.

(1)當時,求證:直線平面;

(2)當時,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案