【題目】已知拋物線:與直線相交于,兩點,為拋物線的焦點,若,則的中點的橫坐標為( )
A. B. 3C. 5D. 6
【答案】A
【解析】
據(jù)題意,設AB的中點為G,根據(jù)直線方程可知直線恒過定點,據(jù)此過A、B分別作AM⊥l于M,BN⊥l于N,根據(jù)|FA|=2|FB|,推斷出|AM|=2|BN|,點B為AP的中點、連接OB,進而分析可得|OB|=|BF|,進而求得點B的橫坐標,則點B的坐標可得,又由B為P、A的中點,可得A的橫坐標,進而由中點坐標公式分析可得答案.
根據(jù)題意,設AB的中點為G,
拋物線C:y2=8x的準線為l:x=﹣2,焦點為(2,0),
直線y=k(x+2)恒過定點P(﹣2,0)
如圖過A、B分別作AM⊥l于M,BN⊥l于N,
由|FA|=2|FB|,則|AM|=2|BN|,
點B為AP的中點、連接OB,則|OB||AF|,
又由|FA|=2|FB|,則|OB|=|BF|,點B的橫坐標為1,
B為P、A的中點,則A的橫坐標為4,
故AB的中點G的橫坐標為;
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點在圓內,在過點P所作的圓的所有弦中,弦長最小值為.
(1)求實數(shù)a的值;
(2)若點M為圓外的動點,過點M向圓C所作的兩條切線始終互相垂直,求點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中.
(Ⅰ)當為偶函數(shù)時,求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間上有兩個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某次測驗中,某班40名考生的成績滿分100分統(tǒng)計如圖所示.
(Ⅰ)估計這40名學生的測驗成績的中位數(shù)精確到0.1;
(Ⅱ)記80分以上為優(yōu)秀,80分及以下為合格,結合頻率分布直方圖完成下表,并判斷是否有95%的把握認為數(shù)學測驗成績與性別有關?
合格 | 優(yōu)秀 | 合計 | |
男生 | 16 | ||
女生 | 4 | ||
合計 | 40 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線過原點且傾斜角為.以坐標原點為極點,軸正半軸為極軸建立坐標系,曲線的極坐標方程為.在平面直角坐標系中,曲線與曲線關于直線對稱.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若直線過原點且傾斜角為,設直線與曲線相交于,兩點,直線與曲線相交于,兩點,當變化時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“愛國,是人世間最深層、最持久的情感,是一個人立德之源、立功之本!痹谥腥A民族幾千年綿延發(fā)展的歷史長河中,愛國主義始終是激昂的主旋律。愛國汽車公司擬對“東方紅”款高端汽車發(fā)動機進行科技改造,根據(jù)市場調研與模擬,得到科技改造投入(億元)與科技改造直接收益(億元)的數(shù)據(jù)統(tǒng)計如下:
2 | 3 | 4 | 6 | 8 | 10 | 13 | 21 | 22 | 23 | 24 | 25 | |
13 | 22 | 31 | 42 | 50 | 56 | 58 | 68.5 | 68 | 67.5 | 66 | 66 |
當時,建立了與的兩個回歸模型:模型①:;模型②:;當時,確定與滿足的線性回歸方程為:.
(1)根據(jù)下列表格中的數(shù)據(jù),比較當時模型①、②的相關指數(shù),并選擇擬合精度更高、更可靠的模型,預測對“東方紅”款汽車發(fā)動機科技改造的投入為17億元時的直接收益.
回歸模型 | 模型① | 模型② |
回歸方程 | ||
182.4 | 79.2 |
(附:刻畫回歸效果的相關指數(shù),.)
(2)為鼓勵科技創(chuàng)新,當科技改造的投入不少于20億元時,國家給予公司補貼收益10億元,以回歸方程為預測依據(jù),比較科技改造投入17億元與20億元時公司實際收益的大;
(附:用最小二乘法求線性回歸方程的系數(shù)公式 ;)
(3)科技改造后,“東方紅”款汽車發(fā)動機的熱效大幅提高,服從正態(tài)分布,公司對科技改造團隊的獎勵方案如下:若發(fā)動機的熱效率不超過,不予獎勵;若發(fā)動機的熱效率超過但不超過,每臺發(fā)動機獎勵2萬元;若發(fā)動機的熱效率超過,每臺發(fā)動機獎勵5萬元.求每臺發(fā)動機獲得獎勵的數(shù)學期望.
(附:隨機變量服從正態(tài)分布,則,.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在圓柱中,點、分別為上、下底面的圓心,平面是軸截面,點在上底面圓周上(異于、),點為下底面圓弧的中點,點與點在平面的同側,圓柱的底面半徑為1,高為2.
(1)若平面平面,證明:;
(2)若直線平面,求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(其中為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,并取相同的單位長度,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)過點作直線的垂線交曲線于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設圓與直線交于點,若點的坐標為,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com