【題目】下列命題中正確的是 ( )
A.由五個平面圍成的多面體只能是四棱錐
B.棱錐的高線可能在幾何體之外
C.僅有一組對面平行的六面體是棱臺
D.有一個面是多邊形,其余各面是三角形的幾何體是棱錐
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:,點.
(1)過點的直線與圓交與兩點,若,求直線的方程;
(2)從圓外一點向該圓引一條切線,切點記為,為坐標原點,且滿足,求使得取得最小值時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路汽車的車流量(千輛/ )與汽車的平均速度之間的函數(shù)關(guān)系式為.
(I)若要求在該段時間內(nèi)車流量超過2千輛/ ,則汽車在平均速度應在什么范圍內(nèi)?
(II)在該時段內(nèi),當汽車的平均速度為多少時,車流量最大?最大車流量為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:“,使等式成立”是真命題.
(1)求實數(shù)的取值集合;
(2)設(shè)不等式的解集為,若是的必要不充分條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知數(shù)列和滿足,若為等比數(shù)列,且,.
(1)求與;
(2)設(shè)(),記數(shù)列的前項和為,
(I)求;
(II)求正整數(shù),使得對任意均有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某隧道設(shè)計為雙向四車道,車道總寬為,要求通行車輛限高,隧道全長為,隧道的拱線可近似的看成半個橢圓形狀.
(1)若最大拱高為,則隧道設(shè)計的拱寬是多少?
(2)若最大拱高不小于,則應如何設(shè)計拱高和拱寬,才能使隧道的土方工程量最小?
(注: 1.半個橢圓的面積公式為;2.隧道的土方工程量=截面面積隧道長)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童的組合體中,.臺體體積公式:,其中分別為臺體上、下底面面積,為臺體高.
(Ⅰ)證明:直線 平面;
(Ⅱ)若,,,三棱錐的體積,求該組合體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某年級同學每天參加體育鍛煉的時間,比較恰當?shù)厥占瘮?shù)據(jù)的方法是( )
A.查閱資料B.問卷調(diào)查C.做試驗D.以上均不對
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量, , ,函數(shù),已知的圖像的一個對稱中心與它相鄰的一條對稱軸之間的距離為1,且經(jīng)過點
(Ⅰ)求函數(shù)的解析式
(Ⅱ)先將函數(shù)圖像上各點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,再向右平移 個單位長度,向下平移3個單位長度,得到函數(shù)的圖像,若函數(shù)的圖像關(guān)于原點對稱,求實數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com