【題目】已知圓:,點.
(1)過點的直線與圓交與兩點,若,求直線的方程;
(2)從圓外一點向該圓引一條切線,切點記為,為坐標(biāo)原點,且滿足,求使得取得最小值時點的坐標(biāo).
【答案】(1)或 (2)
【解析】
試題分析:(1)⊙C:,化為標(biāo)準(zhǔn)方程,求出圓心C,半徑r.分類討論,利用C到l的距離為1,即可求直線l的方程;(2)設(shè)P(x,y).由切線的性質(zhì)可得:CM⊥PM,利用|PM|=|PO|,可得y+x-1=0,求|PM|的最小值,即求|PO|的最小值,即求原點O到直線y+x-1=0的距離
試題解析:圓方程可化為
(1)當(dāng)直線與軸垂直時,滿足,所以此時
當(dāng)直線與軸不垂直時,設(shè)直線方程為,
即
因為,所以圓心到直線的距離
由點到直線的距離公式得
解得
所以直線的方程為
所以所求直線的方程為或
(2)因為,,
化簡得
即點在直線上,
當(dāng)最小是時,即取得最小,此時垂直直線
所以的方程為
所以 解得
所以點的坐標(biāo)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
將圓上每一點的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?倍得到曲線.
(1)寫出曲線的參數(shù)方程;
(2)以坐標(biāo)原點為極點,軸正半軸為極軸坐標(biāo)建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,若分別為曲線和直線上的一點,求的最近距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,二次函數(shù),關(guān)于的不等式的解集為,其中為非零常數(shù),設(shè).
(1)求的值;
(2)若存在一條與軸垂直的直線和函數(shù)的圖象相切,且切點的橫坐標(biāo)滿足,求實數(shù)的取值范圍;
(3)當(dāng)實數(shù)取何值時,函數(shù)存在極值?并求出相應(yīng)的極值點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地為弘揚中國傳統(tǒng)文化舉辦“傳統(tǒng)文化常識問答活動”,隨機(jī)對該市歲的人群抽取一個容量為的樣本,并將樣本數(shù)據(jù)分成五組: ,再將其按從左到右的順序分別編號為第組,第組,…,第組,繪制了樣本的頻率分布直方圖,并對回答問題情況進(jìn)行統(tǒng)計后,結(jié)果如下表所示.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的比例 |
第組 |
| ||
第組 |
| ||
第組 |
| ||
第組 |
| ||
第組 |
|
⑴分別求出, 的值;
⑵從組回答正確的人中用分層抽樣的方法抽取人,則第組每組應(yīng)各抽取多少人?
⑶在⑵的前提下,決定在所抽取的人中隨機(jī)抽取人頒發(fā)幸運獎,求所抽取的人中第組至少有人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角和鈍角的終邊分別與單位圓交于點,若點的橫坐標(biāo)是,點的縱坐標(biāo)是.
(1)求的值;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與曲線有三個不同的交點.
(1)求圓的方程;
(2)已知點是軸上的動點, , 分別切圓于, 兩點.
①若,求及直線的方程;
②求證:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一河南旅游團(tuán)到安徽旅游.看到安徽有很多特色食品,其中水果類較有名氣的有:懷遠(yuǎn)石榴、碭山梨、徽州青棗等19種,點心類較有名氣的有:一品玉帶糕、徽墨酥、八公山大救駕等38種,小吃類較有名氣的有:符離集燒雞、無為熏鴨、合肥龍蝦等57種.該旅游團(tuán)的游客決定按分層抽樣的方法從這些特產(chǎn)中買6種帶給親朋品嘗.
(1)求應(yīng)從水果類、點心類、小吃類中分別買回的種數(shù);
(2)若某游客從買回的6種特產(chǎn)中隨機(jī)抽取2種送給自己的父母,
①列出所有可能的抽取結(jié)果;
②求抽取的2種特產(chǎn)均為小吃的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是 ( )
A.由五個平面圍成的多面體只能是四棱錐
B.棱錐的高線可能在幾何體之外
C.僅有一組對面平行的六面體是棱臺
D.有一個面是多邊形,其余各面是三角形的幾何體是棱錐
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com