已知函數(shù),,函數(shù)的圖像在點處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極小值;
(3)設斜率為的直線與函數(shù)的圖象交于兩點,(),證明:.
(1) ;(2);(3)證明過程詳見解析.
解析試題分析:本題考查函數(shù)與導數(shù)及運用導數(shù)求切線方程、單調區(qū)間、最值等數(shù)學知識和方法,突出考查綜合運用數(shù)學知識和方法分析問題解決問題的能力.第一問,對求導,將代入得到切線的斜率,由已知得,即,所以;第二問,利用第一問的結論得到的解析式,對求導,判斷函數(shù)的單調性和極值;第三問,先用分析法得出與結論等價的式子,即,先證不等式的右邊,構造函數(shù),通過求導數(shù)判斷函數(shù)的單調性,求出最大值,所以,即,再證不等式的左邊,同樣構造函數(shù),通過求導,求出最小值,即,即,綜合上述兩部分的證明可得.
試題解析:(1)依題意得,則
由函數(shù)的圖象在點處的切線平行于軸得:
∴ .
(2)由(1)得
∵函數(shù)的定義域為,令得或
函數(shù)在上單調遞增,在單調遞減;在上單調遞增.故函數(shù)的極小值為
(3)證法一:依題意得,
要證,即證
因,即證
令(),即證()
令()則
∴在(1,+)上單調遞減,
∴ 即, ①
令()則
∴在(1,+)上單調遞增,
∴=0,即() ②
綜①②得(),即.
【證法二:依題意得,
令則
由得
科目:高中數(shù)學 來源: 題型:解答題
定義函數(shù)為的階函數(shù).
(1)求一階函數(shù)的單調區(qū)間;
(2)討論方程的解的個數(shù);
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)R,,
(1)求函數(shù)f(x)的值域;
(2)記函數(shù),若的最小值與無關,求的取值范圍;
(3)若,直接寫出(不需給出演算步驟)關于的方程的解集
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(I)求函數(shù)的單調遞減區(qū)間;
(II)若在上恒成立,求實數(shù)的取值范圍;
(III)過點作函數(shù)圖像的切線,求切線方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),其中.
(I)若函數(shù)圖象恒過定點P,且點P關于直線的對稱點在的圖象上,求m的值;
(Ⅱ)當時,設,討論的單調性;
(Ⅲ)在(I)的條件下,設,曲線上是否存在兩點P、Q,使△OPQ(O為原點)是以O為直角頂點的直角三角形,且斜邊的中點在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),其中.
(1)若,求在的最小值;
(2)如果在定義域內既有極大值又有極小值,求實數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當時,不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),且在時函數(shù)取得極值.
(1)求的單調增區(qū)間;
(2)若,
(Ⅰ)證明:當時,的圖象恒在的上方;
(Ⅱ)證明不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù),其中.
(1)若,求在的最小值;
(2)如果在定義域內既有極大值又有極小值,求實數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當時,不等式恒成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com