直線與曲線的交點(diǎn)個(gè)數(shù)為(    )
A.4個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
D

試題分析:解:當(dāng)x>0時(shí),曲線
方程化為,把直線y=x+3代入得,5x=24,所以當(dāng)x>0時(shí),直線y=x+3與曲線
的交點(diǎn)個(gè)數(shù)為1個(gè).當(dāng)x≤0,曲線
方程化為,把直線y=x+3代入得,13x2+24x=0,所以當(dāng)x≤0時(shí),直線y=x+3與曲線的交點(diǎn)個(gè)數(shù)為2個(gè).所以,直線y=x+3與曲線的交點(diǎn)個(gè)數(shù)共3個(gè).故選D
點(diǎn)評(píng):此題考查了直線與橢圓,雙曲線的位置關(guān)系,做題時(shí)應(yīng)認(rèn)真審題,找出內(nèi)在聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為幾點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線上兩點(diǎn)的極坐標(biāo)分別為,圓的參數(shù)方程(為參數(shù)).
(Ⅰ)設(shè)為線段的中點(diǎn),求直線的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過點(diǎn)
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)斜率為1的直線l與橢圓C相交于,兩點(diǎn),連接MA,MB并延長(zhǎng)交直線x=4于P,Q兩點(diǎn),設(shè)yP,yQ分別為點(diǎn)P,Q的縱坐標(biāo),且.求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率為,分別為其左右焦點(diǎn).一動(dòng)圓過點(diǎn),且與直線相切.
(1)求橢圓及動(dòng)圓圓心軌跡的方程;
(2) 在曲線上有兩點(diǎn),橢圓上有兩點(diǎn)、,滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線為;對(duì)給定的,對(duì)應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點(diǎn),且為坐標(biāo)原點(diǎn)),求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2為雙曲線)的兩個(gè)焦點(diǎn),若F1、F2、P(0,2)是正三角形的三個(gè)頂點(diǎn),則雙曲線離心率是(  )
A.B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的中心在原點(diǎn),其上、下頂點(diǎn)分別為,點(diǎn)在直線上,點(diǎn)到橢圓的左焦點(diǎn)的距離為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是橢圓上異于的任意一點(diǎn),點(diǎn)軸上的射影為,的中點(diǎn),直線交直線于點(diǎn),的中點(diǎn),試探究:在橢圓上運(yùn)動(dòng)時(shí),直線與圓:的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C的圓心是直線與x軸的交點(diǎn),且圓C與直線x+y+3=0相切,則圓C的方程為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的焦點(diǎn)為,過焦點(diǎn)且不平行于軸的動(dòng)直線交拋物線于,兩點(diǎn),拋物線在、兩點(diǎn)處的切線交于點(diǎn).

(Ⅰ)求證:,三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)設(shè)直線交該拋物線于,兩點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案