已知橢圓C:的離心率為,且經(jīng)過點(diǎn)
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)斜率為1的直線l與橢圓C相交于,兩點(diǎn),連接MA,MB并延長交直線x=4于P,Q兩點(diǎn),設(shè)yP,yQ分別為點(diǎn)P,Q的縱坐標(biāo),且.求△ABM的面積.
(1)           (2)

試題分析:解:(Ⅰ)依題意,,所以.                         2分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557980549.png" style="vertical-align:middle;" />, 所以.                                   3分
橢圓方程為.                                             5分
(Ⅱ)因?yàn)橹本l的斜率為1,可設(shè)l:,                     6分
,
消y得 ,             7分
,得
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013557778616.png" style="vertical-align:middle;" />,,
所以 ,.                             8分
設(shè)直線MA:,則;同理.       9分
因?yàn)?,
所以 , 即.            10分
所以
所以 ,
,
,
所以 , 所以 .          12分
所以
設(shè)△ABM的面積為S,直線l與x軸交點(diǎn)記為N,
所以
所以 △ABM的面積為.                       14分
點(diǎn)評:主要是考查了直線與橢圓的位置關(guān)系以及韋達(dá)定理的運(yùn)用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是橢圓上的兩點(diǎn),已知向量,若且橢圓的離心率,短軸長為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)A(1,0)和圓上一點(diǎn)P,動點(diǎn)Q滿足,則點(diǎn)Q的軌跡方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為拋物線上一個(gè)動點(diǎn),直線,,則到直線的距離之和的最小值為 (     ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

極坐標(biāo)方程和參數(shù)方程所表示的圖形分別是(     )
A.直線,直線B.直線,圓
C.圓,圓D.圓,直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:)離心率為,上頂點(diǎn)M,右頂點(diǎn)N,直線MN與圓相切,斜率為k的直線l經(jīng)過橢圓E在正半軸的焦點(diǎn)F,且交E于A、B不同兩點(diǎn).
(1)求E的方程;
(2)若點(diǎn)G(m,0)且| GA|=| GB|,,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,過拋物線>0)的頂點(diǎn)作兩條互相垂直的弦OA、OB。

⑴設(shè)OA的斜率為k,試用k表示點(diǎn)A、B的坐標(biāo);
⑵求弦AB中點(diǎn)M的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與曲線的交點(diǎn)個(gè)數(shù)為(    )
A.4個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的離心率為,右準(zhǔn)線方程為。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓上,求實(shí)數(shù)m的值。  

查看答案和解析>>

同步練習(xí)冊答案