已知為拋物線上一個動點(diǎn),直線,,則到直線、的距離之和的最小值為 (     ).
A.B.C.D.
A

試題分析:將P點(diǎn)到直線l1:x=-1的距離轉(zhuǎn)化為P到焦點(diǎn)F(1,0)的距離,過點(diǎn)F作直線l2垂線,交拋物線于點(diǎn)P,此即為所求最小值點(diǎn),∴P到兩直線的距離之和的最小值為=,故選A.
點(diǎn)評:解題時要認(rèn)真審題,注意拋物線定義及點(diǎn)到直線距離公式的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的準(zhǔn)線方程是               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為橢圓)的兩個焦點(diǎn),過F2作橢圓的弦AB,若的周長為16,橢圓的離心率,則橢圓的方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為幾點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線上兩點(diǎn)的極坐標(biāo)分別為,圓的參數(shù)方程(為參數(shù)).
(Ⅰ)設(shè)為線段的中點(diǎn),求直線的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點(diǎn)P(1,0)作直線分別交射線OA、OB于A、B兩點(diǎn).
(1)當(dāng)AB中點(diǎn)為P時,求直線AB的方程;
(2)當(dāng)AB中點(diǎn)在直線上時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:()經(jīng)過兩點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),橢圓C上一點(diǎn)M滿足.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過點(diǎn)
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)斜率為1的直線l與橢圓C相交于兩點(diǎn),連接MA,MB并延長交直線x=4于P,Q兩點(diǎn),設(shè)yP,yQ分別為點(diǎn)P,Q的縱坐標(biāo),且.求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的中心在原點(diǎn),其上、下頂點(diǎn)分別為,點(diǎn)在直線上,點(diǎn)到橢圓的左焦點(diǎn)的距離為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是橢圓上異于的任意一點(diǎn),點(diǎn)軸上的射影為,的中點(diǎn),直線交直線于點(diǎn),的中點(diǎn),試探究:在橢圓上運(yùn)動時,直線與圓:的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案