【題目】已知函數(shù),三個函數(shù)的定義域均為集合.

(1)若恒成立,滿足條件的實數(shù)組成的集合為,試判斷集合的關系,并說明理由;

(2)記,是否存在,使得對任意的實數(shù),函數(shù)有且僅有兩個零點?若存在,求出滿足條件的最小正整數(shù);若不存在,說明理由.(以下數(shù)據(jù)供參考:

【答案】(1) , (2)

【解析】試題分析:(1)恒成立,,易知上遞減;(2), 由零點存在性定理可知: ,函數(shù)在定義域內有且僅有一個零點,同理可知,函數(shù)在定義域內有且僅有一個零點,假設存在使得, ,令利用

導數(shù)研究其單調性極值與最值即可得出.

試題解析(1) .

易知上遞減,

存在,使得,函數(shù)遞增,在遞減

.

(2) .

,由于

,由零點存在性定理可知: 函數(shù)在定義域內有且僅有一個零點

,同理可 函數(shù)在定義域內有且僅有一個零點

假設存在使得

遞增

此時

所以滿足條件的最小整數(shù)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】奇函數(shù)f(x)的定義域為R,若f(x+1)為偶函數(shù),且f(1)=2,則f(8)+f(5)的值為( )
A.2
B.1
C.-1
D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:在平面內,點到曲線上的點的距離的最小值稱為點到曲線的距離,在平面直角坐標系中,已知圓及點,動點到圓的距離與到點的距離相等,記點的軌跡為曲線.

(1)求曲線的方程;

(2)過原點的直線不與坐標軸重合)與曲線交于不同的兩點,點在曲線上,且,直線軸交于點,設直線的斜率分別為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)求過點的切線方程;

(2)當時,求函數(shù)的最大值;

(3)證明:當時,不等式對任意均成立(其中為自然對數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃在甲、乙兩個電視臺做總時間不超過 300 分鐘的廣告,廣告總費用不超過9萬元.甲、乙電視臺的廣告收費標準分別為500元/分鐘和200元/分鐘.甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司帶來的收益分別為0.3萬元和0.2萬元.設該公司在甲、乙兩個電視臺做廣告的時間分別為分鐘和分鐘.

(Ⅰ)用列出滿足條件的數(shù)學關系式,并畫出相應的平面區(qū)域;

(Ⅱ)該公司如何分配在甲、乙兩個電視臺做廣告的時間使公司的收益最大,并求出最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中山某學校的場室統(tǒng)一使用歐普照明的一種燈管,已知這種燈管使用壽命(單位:月)服從正態(tài)分布,且使用壽命不少于個月的概率為,使用壽命不少于個月的概率為.

1)求這種燈管的平均使用壽命;

2)假設一間課室一次性換上支這種新燈管,使用個月時進行一次檢查,將已經(jīng)損壞的燈管換下(中途不更換),求至少兩支燈管需要更換的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線與拋物線相交于不同兩點、, 為坐標原點.

1)求拋物線的焦點到準線的距離;

2)若直線又與圓相切于點,且為線段的中點,求直線的方程;

3)若,點在線段上,滿足,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,通項滿足是常數(shù), ).

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)當時,證明;

(Ⅲ)設函數(shù), ,是否存在正整數(shù),使都成立?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某景點擬建一個扇環(huán)形狀的花壇(如圖所示),按設計要求扇環(huán)的周長為36米,其中大圓弧所在圓的半徑為14米,設小圓弧所在圓的半徑為米,圓心角為(弧度).

關于的函數(shù)關系式;

已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為16/米,設花壇的面積與裝飾總費用之比為,求關于的函數(shù)關系式,并求出的最大值.

查看答案和解析>>

同步練習冊答案