【題目】設(shè)直線與拋物線相交于不同兩點(diǎn)、, 為坐標(biāo)原點(diǎn).
(1)求拋物線的焦點(diǎn)到準(zhǔn)線的距離;
(2)若直線又與圓相切于點(diǎn),且為線段的中點(diǎn),求直線的方程;
(3)若,點(diǎn)在線段上,滿足,求點(diǎn)的軌跡方程.
【答案】(1)2;(2), ;(3)
【解析】試題分析:(1)根據(jù)題意,由拋物線的方程分析可得的值,即可得答案;(2)根據(jù)題意,設(shè)直線的方程為,分與兩種情況討論,分析的取值,綜合可得可取的值,將的值代入直線的方程即可得答案;(3)設(shè)直線,設(shè)、,將直線的方程與拋物線方程聯(lián)立,結(jié)合,由根與系數(shù)的關(guān)系分析可得答案.
試題解析:(1)∵拋物線的方程為
∴拋物線的焦點(diǎn)到準(zhǔn)線的距離為2
(2)設(shè)直線
當(dāng)時(shí), 和符合題意;
當(dāng)時(shí), 、的坐標(biāo)滿足方程組,
∴的兩根為、, ,
∴,
∴線段的中點(diǎn)
∵,
∴,得
∴,得
∵
∴(舍去)
綜上所述,直線的方程為: ,
(3)設(shè)直線,
、的坐標(biāo)滿足方程組,
∴的兩根為、
, ,
∴,得或
時(shí),直線AB過原點(diǎn),所以;
時(shí),直線AB過定點(diǎn)
設(shè)
∵,
∴(),
綜上,點(diǎn)的軌跡方程為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 為坐標(biāo)原點(diǎn), , 是橢圓 上的點(diǎn),且 ,設(shè)動點(diǎn) 滿足 .
(Ⅰ)求動點(diǎn) 的軌跡 的方程;
(Ⅱ)若直線 與曲線 交于 兩點(diǎn),求三角形 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
已知
(1)求的值
(2)已知變量具有線性相關(guān)性,求產(chǎn)品銷量關(guān)于試銷單價(jià)的線性回歸方程 可供選擇的數(shù)據(jù)
(3)用表示(2)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計(jì)值。當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。
參考數(shù)據(jù):線性回歸方程中的最小二乘估計(jì)分別是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),三個(gè)函數(shù)的定義域均為集合.
(1)若恒成立,滿足條件的實(shí)數(shù)組成的集合為,試判斷集合與的關(guān)系,并說明理由;
(2)記,是否存在,使得對任意的實(shí)數(shù),函數(shù)有且僅有兩個(gè)零點(diǎn)?若存在,求出滿足條件的最小正整數(shù);若不存在,說明理由.(以下數(shù)據(jù)供參考: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x(x≥1),ED=y,求用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應(yīng)在哪里?請予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】韓國民意調(diào)查機(jī)構(gòu)“蓋洛普韓國”2016年11月公布的民調(diào)結(jié)果顯示,受“閨蜜門”時(shí)間影響,韓國總統(tǒng)樸槿惠的民意支持率持續(xù)下跌,在所調(diào)查的1000個(gè)對象中,年齡在[20,30)的群體有200人,支持率為0%,年齡在[30,40)和[40,50)的群體中,支持率均為3%;年齡在[50,60)和[60,70)的群體中,支持率分別為6%和13%,若在調(diào)查的對象中,除[20,30)的群體外,其余各年齡層的人數(shù)分布情況如頻率分布直方圖所示,其中最后三組的頻數(shù)構(gòu)成公差為100的等差數(shù)列.
(1)依頻率分布直方圖求出圖中各年齡層的人數(shù)
(2)請依上述支持率完成下表:
年齡分布 是否支持 | [30,40)和[40,50) | [50,60)和[60,70) | 合計(jì) |
支持 | |||
不支持 | |||
合計(jì) |
根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為年齡與支持率有關(guān)?
附表:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中 參考數(shù)據(jù):125×33=15×275,125×97=25×485)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進(jìn)行訪談,被抽取的2名觀眾中至少有一名女生的概率.
附:
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列中, ,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形中,,,M為DC的中點(diǎn).將沿折起,使得平面⊥平面.
(1)求證:;
(2)若點(diǎn)是線段上的一動點(diǎn),問點(diǎn)在何位置時(shí),二面角的余弦值為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com