【題目】奇函數(shù)f(x)的定義域為R,若f(x+1)為偶函數(shù),且f(1)=2,則f(8)+f(5)的值為( )
A.2
B.1
C.-1
D.-2
【答案】A
【解析】∵f(x+1)為偶函數(shù),f(x)是奇函數(shù),
∴設(shè)g(x)=f(x+1),
則g(-x)=g(x),
即f(-x+1)=f(x+1),
∵f(x)是奇函數(shù),
∴f(-x+1)=f(x+1)=-f(x-1),
即f(x+2)=-f(x),f(x+4)=f(x+2+2)=-f(x+2)=f(x),
f(8)= ,f(5)= ,所以f(8)+f(5)=2
所以答案是:A
【考點精析】本題主要考查了函數(shù)的奇偶性的相關(guān)知識點,需要掌握偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個命題,其中所有真命題的序號為 .
①函數(shù) 在區(qū)間 上存在一個零點,則 的取值范圍是 ;
②“ ”是“ 成等比數(shù)列”的必要不充分條件;
③ , ;
④若 ,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)當 時,求函數(shù) 的圖象在 處的切線方程;
(2)若函數(shù) 在定義域上為單調(diào)增函數(shù).
①求 最大整數(shù)值;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(0)=0,當x>0時,
f(x)= .
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 為坐標原點, , 是橢圓 上的點,且 ,設(shè)動點 滿足 .
(Ⅰ)求動點 的軌跡 的方程;
(Ⅱ)若直線 與曲線 交于 兩點,求三角形 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左焦點和上頂點在直線上, 為橢圓上位于軸上方的一點且軸, 為橢圓上不同于的兩點,且.
(1)求橢圓的標準方程;
(2)設(shè)直線與軸交于點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),三個函數(shù)的定義域均為集合.
(1)若恒成立,滿足條件的實數(shù)組成的集合為,試判斷集合與的關(guān)系,并說明理由;
(2)記,是否存在,使得對任意的實數(shù),函數(shù)有且僅有兩個零點?若存在,求出滿足條件的最小正整數(shù);若不存在,說明理由.(以下數(shù)據(jù)供參考: )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com