【題目】如圖,在矩形ABCD中,AB=4,AD=2,E是CD的中點,現(xiàn)以AE為折痕將△DAE向上折起,D變?yōu)?/span>D',使得平面D'AE⊥平面ABCE.
(1)求證:平面ABD'⊥平面BD'E;
(2)求直線CE與平面BCD'所成角的正弦值.
【答案】(1)見解析(2).
【解析】
(1)證明AE⊥BE,BE⊥AD',結合D′E⊥AD′,推出AD′⊥面BD′E,然后明面ABD′⊥面BD′E.
(2)建立空間直角坐標系,求出平面BCD′的法向量,利用空間向量的數量積求解直線CE與平面BCD'所成角的正弦值即可.
(1)證明:AE=BE,AB=4,
∴AB2=AE2+BE2,∴AE⊥BE,
∵平面D′AE⊥平面ABCE,且交線為AE,
∴BE⊥平面D'AE,又平面,∴BE⊥AD',
又D′E⊥AD′,AE∩D′E=E,∴AD′⊥面BD′E,∵AD′面ABD′,
∴面ABD′⊥面BD′E.
(2)解:取中點為,連接,因為,則,又平面D′AE⊥平面ABCE,且交線為AE,所以平面ABCE,
如圖建立空間直角坐標系,
則A(4,2,0)、C(0,0,0)、B(0,2,0)、,E(2,0,0),
從而(2,0,0),,.
設為平面BCD′的法向量,
則,取,則,,所以.
,
故直線CE與平面所成角的正弦值為.
科目:高中數學 來源: 題型:
【題目】函數對任意的都有,且時的最大值為,下列四個結論:①是的一個極值點;②若為奇函數,則的最小正周期;③若為偶函數,則在上單調遞增;④的取值范圍是.其中一定正確的結論編號是( )
A.①②B.①③C.①②④D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱柱中,已知底面為等腰梯形,,,M,N分別是棱,的中點
(1)證明:直線平面;
(2)若平面,且,求經過點A,M,N的平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形中,,,為的中點,點,分別在線段,上運動(其中不與,重合,不與,重合),且,沿將折起,得到三棱錐,則三棱錐體積的最大值為__________;當三棱錐體積最大時,其外接球的表面積的值為_______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于,若數列滿足,則稱這個數列為“K數列”.
(Ⅰ)已知數列:1,m+1,m2是“K數列”,求實數的取值范圍;
(Ⅱ)是否存在首項為-1的等差數列為“K數列”,且其前n項和滿足
?若存在,求出的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數的等比數列是“K數列”,數列不是“K數列”,若,試判斷數列是否為“K數列”,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過圓上的點作圓的切線,過點作切線的垂線,若直線過拋物線的焦點.
(1)求直線與拋物線的方程;
(2)若直線與拋物線交于點,點在拋物線的準線上,且,求的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】石嘴山市第三中學高三年級統(tǒng)計學生的最近20次數學周測成績(滿分150分),現(xiàn)有甲乙兩位同學的20次成績如莖葉圖所示:
(1)根據莖葉圖求甲乙兩位同學成績的中位數,并將同學乙的成績的頻率分布直方圖填充完整;
(2)根據莖葉圖比較甲乙兩位同學數學成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結論即可);
(3)現(xiàn)從甲乙兩位同學的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體中,異面直線和分別在上底面和下底面上運動,且,現(xiàn)有以下結論:
①當與所成角為60°時,與所成角為60°;
②當與所成角為60°時,與側面所成角為30°;
③與所成角的最小值為45°
④與所成角的最大值為90°
其中正確的是( )
A.①③B.②④C.①③④D.②③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com