(本題滿分12分)
已知≤≤1,若函數(shù)在區(qū)間[1,3]上的最大值
為,最小值為,令.
(1)求的函數(shù)表達(dá)式;
(2)判斷函數(shù)在區(qū)間[,1]上的單調(diào)性,并求出的最小值 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù),其圖象過點(,).
(1)求的值及最小正周期;
(2)將函數(shù)的圖象上各點的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)在[0, ]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù), .
(Ⅰ)令,求關(guān)于的函數(shù)關(guān)系式,并寫出的范圍;
(Ⅱ)求該函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知定義域為R的函數(shù)是奇函數(shù).
(I)求a的值,并指出函數(shù)的單調(diào)性(不必說明單調(diào)性理由);
(II)若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)函數(shù)是R上的偶函數(shù),且當(dāng)時,函數(shù)的解析式為
(1)求的值;
(2)用定義證明在上是減函數(shù);
(3)求當(dāng)時,函數(shù)的解析式;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題10分)已知函數(shù)
(1)判斷函數(shù)的奇偶性
(2)若,判斷函數(shù)在上的單調(diào)性并用定義證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(16分), ( a>1,且)
(1) 求m 值 ,
(2) 求g(x)的定義域;
(3) 若g(x)在上恒正,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分) 已知函數(shù) ,x ∈[ 3 , 5 ] ,
(1)用定義證明函數(shù)的單調(diào)性;
(2)求函數(shù)的最大值和最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com