【題目】已知方程x2+y2﹣2(m+3)x+2(1﹣4m2)y+16m4+9=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍.
【答案】
(1)解:由方程x2+y2﹣2(m+3)x+2(1﹣4m2)y+16m4+9=0
變形得:[x﹣(m+3)]2+[y+(1﹣4m2)]2=﹣7m2+6m+1,
當且僅當﹣7m2+6m+1>0,即7m2﹣6m﹣1<0時方程表示圓;
所以 <m<1時,該方程表示一個圓
(2)解:在 <m<1時,設(shè)r2=﹣7m2+6m+1,為開口向下的拋物線,
r2=﹣7m2+6m+1=
∴
∴
【解析】(1)將方程化為標準方程的形式,要得到方程為圓,則方程的右邊大于0,可得不等式,解之可得到m的范圍.(2)可設(shè)r2=﹣7m2+6m+1,在(1)求出的m的范圍中,利用二次函數(shù)求最值的方法,可確定函數(shù)的值域.
科目:高中數(shù)學 來源: 題型:
【題目】若f(x+1)的定義域為[0,1],則函數(shù)f(2x﹣2)的定義域為( )
A.[log23,2]
B.[0,1]
C.
D.[0,2]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(Ⅰ)證明:BE⊥DC;
(Ⅱ)求直線BE與平面PBD所成角的正弦值;
(Ⅲ)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,試判斷函數(shù)的零點個數(shù);
(2)若函數(shù)在上為增函數(shù),求整數(shù)的最大值,(可能要用的數(shù)據(jù): ; ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直.EF∥AC,AB= ,CE=EF=1. (Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+1=0,O為坐標原點,動點P在圓C外,過P作圓C的切線,設(shè)切點為M.
(1)若點P運動到(1,3)處,求此時切線l的方程;
(2)求滿足條件|PM|=|PO|的點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)證明f(x)在(0,+∞)上單調(diào)遞增;
(2)是否存在實數(shù)a使得f(x)的定義域、值域都是 ,若存在求出a的值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點,則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為,其中為參數(shù), ,再以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為,其中, ,直線與曲線交于兩點.
(1)求的值;
(2)已知點,且,求直線的普通方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com