【題目】設橢圓C:(a>b>0)的右焦點為F,橢圓C上的兩點A,B關于原點對稱,且滿足,|FB|≤|FA|≤2|FB|,則橢圓C的離心率的取值范圍是( )
A.B.
C.D.
【答案】A
【解析】
設橢圓左焦點為,由橢圓的對稱性可知且,可得四邊形AFBF′為矩形,設|AF′|=n,|AF|=m,根據(jù)橢圓的定義以及題意可知mn=2b2 ,從而可求得的范圍,進而可求得離心率.
設橢圓左焦點為,由橢圓的對稱性可知,四邊形為平行四邊形,
又,即FA⊥FB,故平行四邊形AFBF′為矩形,所以|AB|=|FF′|=2c.
設|AF′|=n,|AF|=m,則在Rt△F′AF中,
m+n=2a ①,m2+n2=4c2 ②,
聯(lián)立①②得mn=2b2 ③.
②÷③得,令=t,得t+.
又由|FB|≤|FA|≤2|FB|得=t∈[1,2],所以t+∈.
故橢圓C的離心率的取值范圍是.
故選:A
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1,若AB=BC,E,F分別是AB1,BC1的中點,則下列結論中不成立的是( )
A.EF與BB1垂直B.EF⊥平面BDD1B1
C.EF與C1D所成的角為45°D.EF∥平面A1B1C1D1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調區(qū)間;
(2)設函數(shù),存在,,使得成立成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過點,且在軸上截得的弦長為4.
(1)求動圓圓心的軌跡方程;
(2)過點的直線與曲線交于點,,與軸交于點,設,,求證:是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一款智能學習APP,學習內容包含文章學習和視頻學習兩類,且這兩類學習互不影響.已知該APP積分規(guī)則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計3分鐘積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計發(fā)現(xiàn),文章學習積分的概率分布表如表1所示,視頻學習積分的概率分布表如表2所示.
(1)現(xiàn)隨機抽取1人了解學習情況,求其每日學習積分不低于9分的概率;
(2)現(xiàn)隨機抽取3人了解學習情況,設積分不低于9分的人數(shù)為,求的概率分布及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為(且).
(I)求直線的極坐標方程及曲線的直角坐標方程;
(Ⅱ)已知是直線上的一點,是曲線上的一點, ,,若的最大值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,以棱長為1的正方體的三條棱所在直線為坐標軸,建立空間直角坐標系,點在線段上,點在線段上.
(1)當,且點關于軸的對稱點為點時,求的長度;
(2)當點是面對角線的中點,點在面對角線上運動時,探究的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,平面,是正三角形,與的交點恰好是中點,又,.
(1)求證:;
(2)設為的中點,點在線段上,若直線平面,求的長;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:,直線:.
(1)若直線與拋物線相切,求直線的方程;
(2)設,直線與拋物線交于不同的兩點,,若存在點,滿足,且線段與互相平分(為原點),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com