【題目】已知橢圓的離心率為,左、右焦點分別為、,為橢圓C上一點,且的中點B在y軸上,.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若直線交橢圓于P、Q兩點,若PQ的中點為N,O為原點,直線ON交直線于點M,求的最大值.
【答案】(1);(2)
【解析】
(1)由BO為的中位線,可求出,由此可設(shè),代入橢圓方程,聯(lián)立,,即可求出,,從而得到橢圓方程;
(2)設(shè)、,聯(lián)立,化為關(guān)于x的一元二次方程,由根與系數(shù)的關(guān)系及中點坐標(biāo)公式求出PQ的中點N的坐標(biāo),再由弦長公式求出,由點N的坐標(biāo)寫出直線ON的方程,求出點M.的坐標(biāo),再由兩點間距離公式求出,然后求,換元法求出其最大值.
(1)因為B為的中點, O為線段的中點,
所以BO為的中位線,所以,
又因為,所以,所以可設(shè)
又為橢圓C上一點,所以將代入橢圓方程可得
又,,聯(lián)立解得,,
故所求橢圓方程為;
(2)由直線方程為,
聯(lián)立,可得.
設(shè)、,則,,
所以為;
所以PQ的中點N坐標(biāo)為,
因此直線ON的方程為,
從而點M為,又,所以,
設(shè),令,則,
所以,
因此當(dāng),即時取得最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有五張卡片,其中紅色卡片三張,標(biāo)號分別為1,2,3;藍色卡片兩張,標(biāo)號分別為1,2.
(1)將紅色卡片和藍色卡片分別放在兩個袋中,然后從兩個袋中各取一張卡片,求兩張卡片數(shù)字之積為偶數(shù)的概率
(2)將五張卡片放在一個袋子中,從中任取兩張,求兩張卡片顏色不同的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.
(Ⅰ)求集合M;
(Ⅱ)設(shè)a,b∈M,證明:|ab|+1>|a|+|b|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21.7,22.3](單位:cm)之間的零件,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示:
(Ⅰ)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù)你認為選擇不同的工藝與一等品產(chǎn)出率是否有關(guān)?
甲工藝 | 乙工藝 | 總計 | |
一等品 | |||
非一等品 | |||
總計 |
P(K2≥k) | 0.1 | 0.05 | 0.01 |
k | 2.706 | 3.841 | 6.635 |
附:,其中.
(Ⅱ)以上述兩種工藝中各種產(chǎn)品的頻率作為相應(yīng)產(chǎn)品產(chǎn)出的概率,若一等品、二等品、三等品的單件利潤分別為30元、20元、15元,從一件產(chǎn)品的平均利潤考慮,你認為以后該工廠應(yīng)該選擇哪種工藝生產(chǎn)該種零件?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知底面邊長為a的正三棱柱(底面是等邊三角形的直三棱柱)的六個頂點在球上,且球與此正三棱柱的5個面都相切,則球與球的表面積之比為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論:
① ②是等邊三角形 ③AB與平面BCD所成的角是 ④AB與CD所成角為,其中錯誤的結(jié)論個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)若與有且僅有三個公共點,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上的三點 、 、 .
(1)求以 、 為焦點且過點 的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點 、 、 關(guān)于直線 的對稱點分別為 、 、 ,求以 、 為焦點且過點 的雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),函數(shù).
(1)求的極值;
(2)當(dāng)在什么范圍內(nèi)取值時,曲線與軸僅有一個交點?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com