【題目】今有一長2米寬1米的矩形鐵皮,如圖,在四個(gè)角上分別截去一個(gè)邊長為x米的正方形后,沿虛線折起可做成一個(gè)無蓋的長方體形水箱(接口連接問題不考慮)

(Ⅰ)求水箱容積的表達(dá)式,并指出函數(shù)的定義域;

(Ⅱ)若要使水箱容積不大于立方米的同時(shí),又使得底面積最大,求x的值.

【答案】(1) {x|0x} (2)

【解析】

(Ⅰ)由已知該長方體形水箱高為x米,底面矩形長為(22x)米,寬(12x)米.

該水箱容積為

f(x)(22x)(12x)x4x36x22x

其中正數(shù)x滿足∴0x.

所求函數(shù)f(x)定義域?yàn)?/span>{x|0x}

(Ⅱ)f(x)≤4x3,得x ≤ 0x

定義域?yàn)?/span>{x|0x},x.

此時(shí)的底面積為S(x)(22x)(12x)4x26x2

(x∈[,)).由S(x)4(x)2,

可知S(x)[,)上是單調(diào)減函數(shù),

x.即滿足條件的x.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向右平移個(gè)單位后得到函數(shù)的圖象,則( )

A. 圖象關(guān)于直線對(duì)稱 B. 圖象關(guān)于點(diǎn)中心對(duì)稱

C. 在區(qū)間單調(diào)遞增 D. 在區(qū)間上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)設(shè)的極值點(diǎn).求,并求的單調(diào)區(qū)間;

2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋擲一個(gè)質(zhì)地均勻的骰子的試驗(yàn),事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件B表示“不小于5的點(diǎn)數(shù)出現(xiàn)”,則一次試驗(yàn)中,事件A或事件B至少有一個(gè)發(fā)生的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 稿酬所得以個(gè)人每次取得的收入,定額或定率減除規(guī)定費(fèi)用后的余額為應(yīng)納稅所得額,每次收入不超過4000元,定額減除費(fèi)用800元;每次收入在4000元以上的,定率減除20%的費(fèi)用適用20%的比例稅率,并按規(guī)定對(duì)應(yīng)納稅額減征30%,計(jì)算公式為:

(1)每次收入不超過4000元的:應(yīng)納稅額=(每次收入額-800)×20%×(1-30%)

(2)每次收入在4000元以上的:應(yīng)納稅額=每次收入額×(1-20%)×20%×(1-30%)已知某人出版一份書稿,共納稅280元,這個(gè)人應(yīng)得稿費(fèi)(扣稅前)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ex1+alnx.(e為自然對(duì)數(shù)的底數(shù)),λmin{a+2,5}.(min{a,b}表示a,b中較小的數(shù).)

1)當(dāng)a0時(shí),設(shè)gx)=fx)﹣x,求函數(shù)gx)在[,]上的最值;

2)當(dāng)x1時(shí),證明:fx+x2λx1+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機(jī)變量表示該射手一次測試?yán)塾?jì)得分,如果的值不低于3分就認(rèn)為通過測試,立即停止射擊;否則繼續(xù)射擊,但一次測試最多打靶3次,每次射擊的結(jié)果相互獨(dú)立。

(1)如果該射手選擇方案1,求其測試結(jié)束后所得分的分布列和數(shù)學(xué)期望E

(2)該射手選擇哪種方案通過測試的可能性大?請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足 .

1)證明: 是等比數(shù)列;

(2)令求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是函數(shù)定義域的一個(gè)子集,若存在,使得成立,則稱的一個(gè)“準(zhǔn)不動(dòng)點(diǎn)”,也稱在區(qū)間上存在準(zhǔn)不動(dòng)點(diǎn),已知.

(1)若,求函數(shù)的準(zhǔn)不動(dòng)點(diǎn);

(2)若函數(shù)在區(qū)間上存在準(zhǔn)不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案