【題目】已知圓C:x2+y2+Dx+Ey+3=0,圓C關于直線x+y﹣1=0對稱,圓心在第二象限,半徑為
(1)求圓C的方程;
(2)已知不過原點的直線l與圓C相切,且與x軸、y軸上的截距相等,求直線l的方程.

【答案】解:(1)圓C:x2+y2+Dx+3=0的坐標C(﹣,-),
∵圓C關于直線x+y﹣1=0對稱,
∴C(﹣,-)在直線x+y﹣1=0上,
即﹣-﹣1=0,即D+E+2=0,
半徑R==
即D2+E2=20,
解得,此時圓心為(﹣2,1),或(1,﹣2),
∵圓心在第二象限,∴圓心坐標為(﹣2,1),
則圓C的方程為(x+2)2+(y﹣1)2=2.
(2)設不經(jīng)過直線截距相等的直線方程為x+y=a,即x+y﹣a=0,
則圓心到直線的距離d==,
即|a+1|=2,解得a=1或a=﹣3,
故直線方程為x+y﹣1=0或x+y+3=0.
【解析】(1)求出圓心坐標,根據(jù)圓心在直線上以及圓的半徑建立方程關系即可求圓C的方程;
(2)設直線的截距式方程為x+y=a,利用直線和圓相切建立方程關系即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數(shù)g(x)=|logax﹣1|的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若b= ,c=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F是拋物線y2=x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到y(tǒng)軸的距離為( 。
A.
B.1
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們把焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關曲線”.已知F1、F2是一對相關曲線的焦點,P是它們在第一象限的交點,當∠F1PF2=60°時,這一對相關曲線中雙曲線的離心率是( 。
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年第二次全國大聯(lián)考江蘇卷】若無窮數(shù)列滿足:恒等于常數(shù),則稱具有局部等差數(shù)列.

1)若具有局部等差數(shù)列,且,求;

2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,判斷是否具有局部等差數(shù)列,并說明理由;

3)設既具有局部等差數(shù)列,又具有局部等差數(shù)列,求證具有局部等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設圓弧x2+y2=1(x≥0,y≥0)與兩坐標軸正半軸圍成的扇形區(qū)域為M,過圓弧上中點A做該圓的切線與兩坐標軸正半軸圍成的三角形區(qū)域為N.現(xiàn)隨機在區(qū)域N內(nèi)投一點B,若設點B落在區(qū)域M內(nèi)的概率為P,則P的值為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓C過點(1,0),且于直線x=﹣1相切.
(1)求圓心C的軌跡M的方程;
(2)A,B是M上的動點,O是坐標原點,且 , 求證:直線AB過定點,并求出該點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017福建4月質(zhì)檢】如圖,三棱柱中, , 分別為棱的中點.

(1)在平面內(nèi)過點平面于點,并寫出作圖步驟,但不要求證明.

(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案