如圖,在邊長(zhǎng)為4的菱形ABCD中,∠DAB=60°.點(diǎn)E、F分別在邊CD、CB上,點(diǎn)E與點(diǎn)C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求證:BD⊥平面POA;
(2)記三棱錐P-ABD的體積為V1,四棱錐P-BDEF的體積為V2,求當(dāng)PB取得最小值時(shí)V1∶V2的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AA1,BB1為圓柱OO1的母線,BC是底面圓O的直徑,D,E分別是AA1,CB1的中點(diǎn),DE⊥面CBB1.
(1)證明:DE∥面ABC;
(2)求四棱錐CABB1A1與圓柱OO1的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4.如圖2所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,設(shè)點(diǎn)F是AB的中點(diǎn).
圖1 圖2
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點(diǎn),求三棱錐BDEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐PABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,E,F分別為棱BC,AD的中點(diǎn).
(1)求證:DE∥平面PFB;
(2)已知二面角PBFC的余弦值為,求四棱錐PABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體中,, 沿平面把這個(gè)長(zhǎng)方體截成兩個(gè)幾何體: 幾何體(1);幾何體(2)
(I)設(shè)幾何體(1)、幾何體(2)的體積分為是、,求與的比值
(II)在幾何體(2)中,求二面角的正切值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐P -ABCD中,底面是邊長(zhǎng)為2的菱形,∠DAB=60°,對(duì)角線AC與BD交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.
(1)求四棱錐的體積.
(2)若E是PB的中點(diǎn),求異面直線DE與PA所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
有一個(gè)倒圓錐形容器,它的軸截面是一個(gè)正三角形,在容器內(nèi)放一個(gè)半徑為r的鐵球,并注入水,使水面與球正好相切,然后將球取出,求這時(shí)容器中水的深度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com