已知等邊中,分別是的中點(diǎn),以為焦點(diǎn)且過(guò)的橢圓和雙曲線(xiàn)的離心率分別為,則下列關(guān)于的關(guān)系式不正確的是(   )
A.B.C.D.
B

試題分析:根據(jù)題意,由于等邊中,分別是的中點(diǎn),設(shè)三角形的邊長(zhǎng)為2,那么以為焦點(diǎn)且過(guò)的橢圓和雙曲線(xiàn)的離心率分別為,可知,故選B.
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)三角形的性質(zhì),以及結(jié)合橢圓和雙曲線(xiàn)的定義來(lái)得到離心率,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線(xiàn)的一條漸近線(xiàn)的斜率為,且右焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,則該雙曲線(xiàn)的方程為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓的左、右焦點(diǎn),是橢圓上一點(diǎn),若
(1)求橢圓方程;
(2)若的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓與曲線(xiàn)的離心率互為倒數(shù),則(  )
A.16B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)點(diǎn)P是曲線(xiàn)C:上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到
焦點(diǎn)F的距離之和的最小值為
(1)求曲線(xiàn)C的方程
(2)若點(diǎn)P的橫坐標(biāo)為1,過(guò)P作斜率為的直線(xiàn)交C與另一點(diǎn)Q,交x軸于點(diǎn)M,
過(guò)點(diǎn)Q且與PQ垂直的直線(xiàn)與C交于另一點(diǎn)N,問(wèn)是否存在實(shí)數(shù)k,使得直線(xiàn)MN與曲線(xiàn)C
相切?若存在,求出k的值,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

長(zhǎng)為3的線(xiàn)段的端點(diǎn)分別在軸上移動(dòng),動(dòng)點(diǎn)滿(mǎn)足,則動(dòng)點(diǎn)的軌跡方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在拋物線(xiàn)上,橫坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離為,則的值為(   )
A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓,它的離心率為,一個(gè)焦點(diǎn)和拋物線(xiàn)的焦點(diǎn)重合,過(guò)直線(xiàn)上一點(diǎn)引橢圓的兩條切線(xiàn),切點(diǎn)分別是.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點(diǎn)處的橢圓的切線(xiàn)方程是. 求證:直線(xiàn)恒過(guò)定點(diǎn);并出求定點(diǎn)的坐標(biāo).
(Ⅲ)是否存在實(shí)數(shù),使得恒成立?(點(diǎn)為直線(xiàn)恒過(guò)的定點(diǎn))若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)雙曲線(xiàn)的右焦點(diǎn)作圓的切線(xiàn)(切點(diǎn)為),交軸于點(diǎn).若為線(xiàn)段的中點(diǎn),則雙曲線(xiàn)的離心率為
A.2B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案