【題目】已知,,

1)若,證明:;

2)對任意,都有,求整數(shù)的最大值.

【答案】1)見解析(22

【解析】

1)構(gòu)造函數(shù),利用二次求導可證明結(jié)論成立;

2)利用時,不等式成立以及(1)的結(jié)論,可得,從而只需證明在區(qū)間恒成立即可.再根據(jù)(1)的結(jié)論,轉(zhuǎn)化為證明上恒成立.利用導數(shù)即可證明,由此可得結(jié)果.

1)設(shè),則,

因為,且,

單調(diào)遞減,因為,

所以存在唯一零點,使得

所以時,,時,,

時單調(diào)遞增,在上單調(diào)遞減,

,

所以上恒成立,所以上單調(diào)遞增,

,即

所以

2)因為對任意的,不等式,

恒成立,

,則,

由(1)知,所以

由于為滿足的整數(shù),則

因此

下面證明在區(qū)間恒成立即可.

由(1)知,則

,

設(shè),,則,

所以上單調(diào)遞減,

所以,所以上恒成立.

綜上所述,的最大值為2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】改革開放40年來,我國城市基礎(chǔ)設(shè)施發(fā)生了巨大的變化,各種交通工具大大方便了人們的出行需求.某城市的A先生實行的是早九晚五的工作時間,上班通常乘坐公交或地鐵加步行.已知從家到最近的公交站或地鐵站都需步行5分鐘,乘坐公交到離單位最近的公交站所需時間Z1(單位:分鐘)服從正態(tài)分布N33,42),下車后步行再到單位需要12分鐘;乘坐地鐵到離單位最近的地鐵站所需時間Z2(單位:分鐘)服從正態(tài)分布N44,22),從地鐵站步行到單位需要5分鐘.現(xiàn)有下列說法:①若800出門,則乘坐公交一定不會遲到;②若802出門,則乘坐公交和地鐵上班遲到的可能性相同;③若806出門,則乘坐公交比地鐵上班遲到的可能性大;④若812出門,則乘坐地鐵比公交上班遲到的可能性大.則以上說法中正確的序號是_____.

參考數(shù)據(jù):若ZNμ,σ2),則PμσZμ+σ)=0.6826,PμZμ+)=0.9544PμZμ+)=0.9974

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機構(gòu)隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實體店.

1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;

(2)若從這10名購物者中隨機抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與函數(shù))的圖象相交,將其中三個相鄰交點從左到右依次記為A,BC,且滿足有下列結(jié)論:

n的值可能為2

,且時,的圖象可能關(guān)于直線對稱

時,有且僅有一個實數(shù)ω,使得上單調(diào)遞增;

不等式恒成立

其中所有正確結(jié)論的編號為( )

A.③B.①②C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校同時提供、兩類線上選修課程,類選修課每次觀看線上直播分鐘,并完成課后作業(yè)分鐘,可獲得積分分;類選修課每次觀看線上直播分鐘,并完成課后作業(yè)分鐘,可獲得積分分.每周開設(shè)次,共開設(shè)周,每次均為獨立內(nèi)容,每次只能選擇類、類課程中的一類學習.當選擇類課程次,類課程次時,可獲得總積分共_______分.如果規(guī)定學生觀看直播總時間不得少于分鐘,課后作業(yè)總時間不得少于分鐘,則通過線上選修課的學習,最多可以獲得總積分共________分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當時,求曲線的公切線方程:

2)若有兩個極值點,,且,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中,角,的對邊分別為,,,________.是否存在以,為邊的三角形?如果存在,求出的面積;若不存在,說明理由.

從①;②;③這三個條件中任選一個,補充在上面問題中并作答.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》中有一題:今有牛、馬、羊食人苗,苗主責之粟四斗.羊主曰:我羊食半馬.馬主曰:我馬食半牛.今欲衰償之,問各出幾何?其意是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償4斗粟,羊主人說:我羊所吃的禾苗只有馬的一半.馬主人說:我馬所吃的禾苗只有牛的一半.打算按此比率償還,牛、馬、羊的主人各應(yīng)賠償多少粟?在這個問題中,牛主人比羊主人多賠償了多少斗(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,討論關(guān)于x的方程在區(qū)間上實根的個數(shù).

查看答案和解析>>

同步練習冊答案