【題目】正整數(shù)數(shù)列滿足:,.試求通項公式.
【答案】
【解析】
據(jù)條件知,數(shù)列嚴格遞增.于是,
先在條件式中取,得到,
即. ①
據(jù)式①左端得.
則. ②
又由式①右端得,且,
故. ③
據(jù)式②、③得整數(shù).
再對條件式中取,得到,
即. ④
由式④左端得.
則.
由式④右端得,即.
因,所以,.故.
繼而在已知式中取,得,
即. ⑤
又為正整數(shù),故式⑤右端恒成立.
而由式⑤左端有,故,得.
由,,,,猜想. ⑥
首先,若將式⑥代入已知式得,
即,或.
此式顯然成立.
下證:是滿足條件的唯一數(shù)列.
對歸納.當時已驗證.若式⑥對于成立,則對于,據(jù)已知式有
. ⑦
由式⑦右端得.
則. ⑧
(這里用到,當時, .)
據(jù)式⑦左端得,
即. ⑨
其判別式
.
設(shè)與式⑨對應(yīng)的關(guān)于的一元二次方程的兩根為、.
則
. ⑩
(這里用到,當時, .)
據(jù)式⑧、⑩得.
故由歸納法知,對任意的,式⑥成立,即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的頂點為A,焦點為F.過F作直線l與拋物線交于點P、Q,直線AP、AQ分別與拋物線的準線交于點M、N.問:直線l滿足什么條件時,三直線PN、QM、AF恒交于一點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.已知隨機變量,若.則
B.已知分類變量與的隨機變量的觀察值為,則當的值越大時,“與有關(guān)”的可信度越小.
C.在線性回歸模型中,計算其相關(guān)指數(shù),則可以理解為:解析變量對預(yù)報變量的貢獻率約為
D.若對于變量與的組統(tǒng)計數(shù)據(jù)的線性回歸模型中,相關(guān)指數(shù).又知殘差平方和為.那么.(注意:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,天花板上掛著3串玻璃球,射擊玻璃球規(guī)則:每次擊中1球,每串中下面球沒擊中,上面球不能擊中,則把這6個球全部擊中射擊方法數(shù)是( )
A.78B.60C.48D.36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次比賽中,某隊的六名隊員均獲得獎牌,共獲得4枚金牌2枚銀牌,在頒獎晚會上,這六名隊員與1名領(lǐng)隊排成一排合影,若兩名銀牌獲得者需站在領(lǐng)隊的同側(cè),則不同的排法共有______種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為,(為參數(shù)),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)試判斷點是否在直線上,并說明理由;
(2)設(shè)直線與曲線交于點,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“斗拱”是中國古代建筑中特有的構(gòu)件,從最初的承重作用,到明清時期集承重與裝飾作用于一體。在立柱頂、額枋和檐檁間或構(gòu)架間,從枋上加的一層層探出成弓形的承重結(jié)構(gòu)叫拱,拱與拱之間墊的方形木塊叫斗。如圖所示,是“散斗”(又名“三才升”)的三視圖,則它的體積為( )
A. B. C. 53 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為a,線段B1D1上有兩個動點E,F,且EFa,以下結(jié)論正確的有( 。
A.AC⊥BE
B.點A到△BEF的距離為定值
C.三棱錐A﹣BEF的體積是正方體ABCD﹣A1B1C1D1體積的
D.異面直線AE,BF所成的角為定值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com