【題目】已知定義在(﹣∞,0)上的函數(shù)f(x),其導(dǎo)函數(shù)記為f'(x),若成立,則下列正確的是( 。

A. f(﹣e)﹣e2f(﹣1)>0 B.

C. e2f(﹣e)﹣f(﹣1)>0 D.

【答案】A

【解析】

由題干知:,x<﹣1時,2f(x)﹣xf′(x)<0.﹣1<x<0時,2f(x)﹣xf′(x)>0.構(gòu)造函數(shù)g(x)=,對函數(shù)求導(dǎo)可得到x<﹣1時,g′(x)<0;﹣1<x<0,g′(x)>0,利用函數(shù)的單調(diào)性得到結(jié)果.

,∴x<﹣1時,2f(x)﹣xf′(x)<0.

﹣1<x<0時,2f(x)﹣xf′(x)>0.

構(gòu)造函數(shù)g(x)=,g′(x)==

x<﹣1時,g′(x)<0;﹣1<x<0,g′(x)>0.

∴g(﹣e)>g(﹣1),

,化為:f(﹣e)﹣e2f(﹣1)>0.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計劃舉辦“國學(xué)”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動,在活動前,對所選的10名同學(xué)進行了國學(xué)素養(yǎng)測試,這10名同學(xué)的性別和測試成績(百分制)的莖葉圖如圖所示.

(1)分別計算這10名同學(xué)中,男女生測試的平均成績;

(2)若這10名同學(xué)中,男生和女生的國學(xué)素養(yǎng)測試成績的標(biāo)準(zhǔn)差分別為S1,S2,試比較S1S2的大。ú槐赜嬎,只需直接寫出結(jié)果);

(3)規(guī)定成績大于等于75分為優(yōu)良,從這10名同學(xué)中隨機選取一男一女兩名同學(xué),求這兩名同學(xué)的國學(xué)素養(yǎng)測試成績均為優(yōu)良的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)將, 的方程化為普通方程,并說明它們分別表示什么曲線?

(2)以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.若上的點對應(yīng)的參數(shù)為,點上,點的中點,求點到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有四個小球,分別寫有“和、平、世、界”四個字,有放回地從中任取一個小球,直到“和”“平”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產(chǎn)生0到3之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表“和、平、世、界”這四個字,以每三個隨機數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下24個隨機數(shù)組:

232 321 230 023 123 021 132 220 011 203 331 100

231 130 133 231 031 320 122 103 233 221 020 132

由此可以估計,恰好第三次就停止的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在(0,+∞)上單調(diào)遞減的為(  )

A. y=ln(3﹣x2 B. y=cosx C. y=x2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P所在平面外一點,點,,分別是,,的重心.

1)求證:平面平面ABC

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,、兩兩垂直,平面平面,平面平面,.

1)證明:四邊形是正方形;

2)判斷點、、是否共面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的正方形的中心為為圓上的點,,,,分別是以為底邊的等腰三角形.沿虛線剪開后,分別以為折痕折起,,,使得重合,得到一個四棱錐.當(dāng)該四棱錐的側(cè)面積是底面積的2倍時,該四棱錐的外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求曲線在點處的切線方程;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案