【題目】如圖,在直三棱柱中,,,D是BC的中點

(1)求證:平面;

2).求二面角的大。

【答案】(1)見證明;(2)

【解析】

1)證明線面平行,可以利用線面平行的判定定理,只要證明 A1BOD即可;(2)可判斷BABCBB1兩兩垂直,建立空間直角坐標系,用坐標表示點與向量,求得平面ADC1的法向量、平面ADC的法向量,利用向量數(shù)量積可求二面角C1ADC的余弦值;

證明:連接,交于點O,連接OD.

是直三棱柱,

得四邊形為矩形,

O為的中點,又D為BC中點,

所以OD為中位線,

所以,

因為平面,平面

所以平面

(2)過D點作的平行線,因為為直三棱柱,所以平行線

垂直于底面ABC

又因為,所以三角形為正三角形

所以,所以以D為坐標原點建立如圖所示的空間直角坐標系

,則,所以D(0,0,0),,,

所以平面的一個法向量為.

,令,得到

又易知平面ADC與z軸垂直,

所以平面ADC的一個法向量

所以,

由圖可以看出二面角為銳角

所以二面角的大小為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中, , , , 為線段的中點, 為線段的三等分點(如圖1).將沿著折起到的位置,連接(如圖2).

1若平面平面求三棱錐的體積;

2記線段的中點為平面與平面的交線為,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側面是菱形,其對角線的交點為,且, .

⑴ 求證: 平面

(2)設,若三棱錐的體積為1,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在空間中,下列命題正確的是

A.如果一個角的兩邊和另一角的兩邊分別平行,那么這兩個角相等

B.兩條異面直線所成的有的范圍是

C.如果兩個平行平面同時與第三個平面相交,那么它們的交線平行

D.如果一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個平面平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義在R上的奇函數(shù),且對任意都有,當時,,則的值為( )

A. B. 1 C. D. -2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線y2=4x的焦點F的弦長為36,求弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其“無故障使用時間 (單位:小時)”衡量,無故障使用時間越大表明產(chǎn)品質(zhì)量越好,且無故障使用時間大于3小時的產(chǎn)品為優(yōu)質(zhì)品,從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取100件,并記錄了每件產(chǎn)品的無故障使用時間,得到下面試驗結果:

無故障使用時間 (小時)

頻數(shù)

20

40

40

以試驗結果中無故障使用時間落入各組的頻率作為一件產(chǎn)品的無故障使用時間落入相應組的概率.

(1)從該企業(yè)任取兩件這種產(chǎn)品,求至少有一件是優(yōu)質(zhì)品的概率;

(2)若該企業(yè)生產(chǎn)的這種產(chǎn)品每件銷售利潤 (單位:元)與其無故障使用時間的關系式為

從該企業(yè)任取兩件這種產(chǎn)品,其利潤記為 (單位:元),求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修44:坐標系與參數(shù)方程]

在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以平面直角坐標系的原點為極點,正半軸為極軸,取相同的長度單位建立極坐標系,曲線C的極坐標方程為.

(Ⅰ)求直線l和曲線C的直角坐標方程,并指明曲線C的形狀;

()設直線l與曲線C交于A,B兩點,O為坐標原點,且OA<|OB|,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關, 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/

6

11

20

27

57

77

經(jīng)計算得: , ,

,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關于x的回歸方程為=0.06e0.2303x,且相關指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預測溫度為35C時該種藥用昆蟲的產(chǎn)卵數(shù)(結果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計為

=;相關指數(shù)R2=

查看答案和解析>>

同步練習冊答案