【題目】在空間中,下列命題正確的是

A.如果一個角的兩邊和另一角的兩邊分別平行,那么這兩個角相等

B.兩條異面直線所成的有的范圍是

C.如果兩個平行平面同時與第三個平面相交,那么它們的交線平行

D.如果一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個平面平行

【答案】C

【解析】

根據(jù)兩個角可能互補判斷A;根據(jù)兩條異面直線所成的角不能是零度,判斷B;根據(jù)根據(jù)兩個平面平行的性質(zhì)定理知判斷C;利用直線與這個平面平行或在這個平面內(nèi)判斷D.

如果一個角的兩邊和另一個角的兩邊分別平行,這兩個角相等或互補,A不正確;
兩條異面直線所成的角不能是零度,B不正確;
根據(jù)兩個平面平行的性質(zhì)定理知C正確;
如果一條直線和一個平面內(nèi)的一條直線平行,那么這條直線與這個平面平行或在這個平面內(nèi),D不正確,綜上可知只有C的說法是正確的,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓作圓的切線,切點為在第二象限).

1)求的正弦值;

2)已知點,過點分別作兩圓切線,若切線長相等,求關(guān)系;

3)是否存在定點,使過點有無數(shù)對相互垂直的直線滿足,且它們分別被圓、圓所截得的弦長相等?若存在,求出所有的點;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)是奇函數(shù).

(1)判斷函數(shù)的奇偶性,并求實數(shù)的值;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)設(shè),若存在,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班主任為了對本班學(xué)生的月考成績進行分析,從全班40名同學(xué)中隨機抽取一個容量為6的樣本進行分析.隨機抽取6位同學(xué)的數(shù)學(xué)、物理分數(shù)對應(yīng)如表:

學(xué)生編號

1

2

3

4

5

6

數(shù)學(xué)分數(shù)x

60

70

80

85

90

95

物理分數(shù)y

72

80

88

90

85

95

(1)根據(jù)上表數(shù)據(jù)用散點圖說明物理成績y與數(shù)學(xué)成績x之間是否具有線性相關(guān)性?

(2)如果具有線性相關(guān)性,求出線性回歸方程(系數(shù)精確到0.1);如果不具有線性相關(guān)性,請說明理由.

(3)如果班里的某位同學(xué)數(shù)學(xué)成績?yōu)?0,請預(yù)測這位同學(xué)的物理成績。

(附)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺中, , 分別是 的中點, 平面, 是等邊三角形, , ,.

(1)證明: 平面;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), .

(1)若函數(shù)上單調(diào)遞增,求的取值范圍;

(2)設(shè),點是曲線的一個交點,且這兩曲線在點處的切線互相垂直,證明:存在唯一的實數(shù)滿足題意,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,D是BC的中點

(1)求證:平面;

2).求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式在(0,+)上恒成立,則a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和點.

1)過點向圓引切線,求切線的方程;

2)求以點為圓心,且被直線截得的弦長為8的圓的方程;

3)設(shè)為(2)中圓上任意一點,過點向圓引切線,切點為,試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請求出定點的坐標(biāo),并指出相應(yīng)的定值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案