【題目】已知過(guò)拋物線y2=4x的焦點(diǎn)F的弦長(zhǎng)為36,求弦所在的直線方程.

【答案】y= (x-1)或y=-(x-1).

【解析】

分析知直線的斜率存在且不為0,設(shè)直線方程并與拋物線方程聯(lián)立,利用過(guò)焦點(diǎn)的弦長(zhǎng)公式進(jìn)行計(jì)算即可得到答案.

因?yàn)檫^(guò)焦點(diǎn)的弦長(zhǎng)為36,

所以弦所在的直線的斜率存在且不為零.

故可設(shè)弦所在直線的斜率為k,

且與拋物線交于A(x1,y1)、B(x2,y2)兩點(diǎn).

因?yàn)閽佄锞y2=4x的焦點(diǎn)為F(1,0).

所以 直線的方程為y=k(x-1).

整理得k2x2-(2k2+4)x+k2=0(k≠0).

所以 x1+x2.

所以 |AB|=|AF|+|BF|=x1+x2+2=+2.

又|AB|=36,所以+2=36,所以 k=±.

所以 所求直線方程為y= (x-1)或y=- (x-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,平面ABCD,且,點(diǎn)E為線段PD的中點(diǎn).

1)求證:平面AEC

2)求證:平面PCD;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任為了對(duì)本班學(xué)生的月考成績(jī)進(jìn)行分析,從全班40名同學(xué)中隨機(jī)抽取一個(gè)容量為6的樣本進(jìn)行分析.隨機(jī)抽取6位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)對(duì)應(yīng)如表:

學(xué)生編號(hào)

1

2

3

4

5

6

數(shù)學(xué)分?jǐn)?shù)x

60

70

80

85

90

95

物理分?jǐn)?shù)y

72

80

88

90

85

95

(1)根據(jù)上表數(shù)據(jù)用散點(diǎn)圖說(shuō)明物理成績(jī)y與數(shù)學(xué)成績(jī)x之間是否具有線性相關(guān)性?

(2)如果具有線性相關(guān)性,求出線性回歸方程(系數(shù)精確到0.1);如果不具有線性相關(guān)性,請(qǐng)說(shuō)明理由.

(3)如果班里的某位同學(xué)數(shù)學(xué)成績(jī)?yōu)?0,請(qǐng)預(yù)測(cè)這位同學(xué)的物理成績(jī)。

(附)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), .

(1)若函數(shù)上單調(diào)遞增,求的取值范圍;

(2)設(shè),點(diǎn)是曲線的一個(gè)交點(diǎn),且這兩曲線在點(diǎn)處的切線互相垂直,證明:存在唯一的實(shí)數(shù)滿足題意,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,,D是BC的中點(diǎn)

(1)求證:平面;

2).求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論錯(cuò)誤的是 (   )

A. 命題“若,則”的逆否命題為“若,則

B. 命題“”的否定是

C. 命題“若,則”的逆命題為真命題

D. 命題“若,則”的否命題是“若,則m≠0或n≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式在(0,+)上恒成立,則a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的一條直徑是橢圓的長(zhǎng)軸,過(guò)橢圓上一點(diǎn)的動(dòng)直線與圓相交于點(diǎn),弦的最小值為.

(1)求圓及橢圓的方程;

(2) 已知點(diǎn)是橢圓上的任意一點(diǎn),點(diǎn)軸上的一定點(diǎn),直線的方程為,若點(diǎn)到定直線的距離與到定點(diǎn)的距離之比為,求定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓x2+y2-2y-1=0關(guān)于直線y=x對(duì)稱的圓的方程是 (  )

A. (x-1)2+y2=2 B. (x+1)2+y2=2 C. (x-1)2+y2=4 D. (x+1)2+y2=4

【答案】A

【解析】 的標(biāo)準(zhǔn)方程為,所以圓心為(0,1),半徑為,圓心關(guān)于直線的對(duì)稱點(diǎn)是(1,0),所以圓x2y22y10關(guān)于直線yx對(duì)稱的圓的方程是,選A.

點(diǎn)睛:本題主要考查圓關(guān)于直線的對(duì)稱的圓的方程,屬于基礎(chǔ)題。解答本題的關(guān)鍵是求出圓心關(guān)于直線的對(duì)稱點(diǎn),兩圓半徑相同。

型】單選題
結(jié)束】
8

【題目】已知雙曲線的離心率為,焦點(diǎn)是, ,則雙曲線方程為 ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案