【題目】已知函數(shù)f(x)=|x﹣2|.
(1)解不等式f(x)+f(x+1)≥5;
(2)若|a|>1且 ,證明:|b|>2.
【答案】
(1)解:原不等式等價于|x﹣2|+|x﹣1|≥5,
當x>2時,不等式可化為:(x﹣2)+(x﹣1)≥5,
解得:x≥4,
當1≤x≤2時,不等式可化為(2﹣x)+(x﹣1)≥5,1≥5,無解,
x<1時,不等式可化為:(2﹣x)+(1﹣x)≥5,解得:x≤﹣1,
綜上,不等式的解集是{x|x≥4或x≤﹣1}
(2)證明:
|ab﹣2|>|a|| ﹣2|
|ab﹣2|>|b﹣2a|
(ab﹣2)2>(b﹣2a)2
a2b2+4﹣b2﹣4a2>0
(a2﹣1)(b2﹣4)>0,
∵|a|>1,
∴a2﹣1>0,
∴b2﹣4>0,
∴|b|>2,證畢
【解析】(1)通過討論x的范圍,去掉絕對值號,解不等式即可;(2)求出f(ab)和f( ),代入不等式,問題轉(zhuǎn)化為|ab﹣2|>|b﹣2a|,平方證明即可.
【考點精析】認真審題,首先需要了解絕對值不等式的解法(含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號).
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為拋物線上存在一點到焦點的距離等于3.
(1)求拋物線的方程;
(2)過點的直線與拋物線相交于兩點(兩點在軸上方),點關于軸的對稱點為,且,求的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣2|x|.
(1)求不等式f(x)≤﹣6的解集;
(2)若存在實數(shù)x滿足f(x)=log2a,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高二某班共有20名男生,在一次體驗中這20名男生被平均分成兩個小組,第一組和第二組男生的身高(單位: )的莖葉圖如下:
(1)根據(jù)莖葉圖,分別寫出兩組學生身高的中位數(shù);
(2)從該班身高超過的7名男生中隨機選出2名男生參加;@球隊集訓,求這2名男生至少有1人來自第二組的概率;
(3)在兩組身高位于(單位: )的男生中各隨機選出2人,設這4人中身高位于(單位: )的人數(shù)為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有價值10萬元的一條流水線,要提高該流水線的生產(chǎn)能力,就要對其進行技術改造,改造就需要投入,相應就要提高產(chǎn)品附加值,假設附加值萬元與技術改造投入萬元之間的關系滿足:① 與和的乘積成正比;② 當時,;③,其中為常數(shù),且.
(1)設,求出的表達式,并求出的定義域;
(2)求出附加值的最大值,并求出此時的技術改造投入的的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價x(元)之間的關系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在區(qū)間上的值域.
(1)求的值;
(2)若不等式在上恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有工人1000名,為了提高工人的生產(chǎn)技能,特組織工人參加培訓.其中250名工人參加過短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為類工人).現(xiàn)從該工廠的工人中共抽查了100名工人作為樣本,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力是指工人一天加工的零件數(shù)),得到類工人生產(chǎn)能力的莖葉圖(圖1),類工人生產(chǎn)能力的頻率分布直方圖(圖2).
(1)在樣本中求類工人生產(chǎn)能力的中位數(shù),并估計類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,現(xiàn)以樣本中頻率作為概率,從1000名工人中按分層抽樣共抽取名工人進行調(diào)查,請估計這名工人中的各類人數(shù),完成下面的列聯(lián)表.
若研究得到在犯錯誤的概率不超過的前提下,認為生產(chǎn)能力與培訓時間長短有關,則的最小值為多少?
參考數(shù)據(jù):
參考公式: ,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com