對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).
(1)若(1,1)是f(x)的一個“P數(shù)對”,即f(2x)=f(x)+1恒成立,整理f(2x)-f(x)=1,令x=2k,則f(2k+1)-f(2k)=1,
所以f(2),f(4),f(8),…f(2n)構成公差為1的等差數(shù)列,
令x=1得f(2)=f(1)+1=4,所以f(2n)=4+(n-1)×1=n+3
(2)當x∈[1,2)時f(x)=k-|2x-3|,令x=1,則f(1)=k-1=3,解得k=4,即當x∈[1,2)時f(x)=4-|2x-3|,所以f(x)在[1,2)上的取值范圍是[3,4],
又(-2,0)是f(x)的一個“P數(shù)對”,即f(2x)=-2f(x)恒成立,當x∈[2k-1,2k)(k∈N*)時,
x
2k-1
∈[1,2)
f(x)=-2f(
x
2
)=4f(
x
4
)=…=(-2)k-1f(
x
2k-1
),
故當k為奇數(shù)時,f(x)在[2k-1,2k)上的取值范圍是[3×2k-1,2k+1]
當k為偶數(shù)時,f(x)在[2k-1,2k)上的取值范圍是[-2k+1,-3×2k-1]
所以當n=1時,f(x)在區(qū)間[1,2n)上的最大值為4,最小值為3.
當n為不小于3的奇數(shù)時,f(x)在區(qū)間[1,2n)上的最大值為2n+1,最小值為-2n
n為不小于2的偶數(shù)時,f(x)在區(qū)間[1,2n)上的最大值為2n,最小值為-2n+1
(3)(2,-2)是f(x)的一個“類P數(shù)對”,可知f(2x)≥2f(x)-2恒成立.即f(x)
1
2
f(2x)+1恒成立.
令x=
1
2k
,則得f(
1
2k
)≤
1
2
f(
1
2k-1
)+1

f(
1
2k
)
-2
1
2
[f(
1
2k-1
)-2]
對一切k∈N*恒成立.
所以f(
1
2n
)-2
1
2
[f(
1
2n-1
)-2]
1
4
[f(
1
2k-2
)-2]
≤…
1
2n
[f(1)-2]
=
1
2n
故f(2-n)≤2-n+2(n∈N*);
若x∈(0,1]),則必存在n∈N*,使得∈(
1
2n
,
1
2n-1
],由f(x)是增函數(shù),故f(x)≤f(
1
2n-1
)≤
1
2n-1
+2
又2x+2>2×
1
2x
+2=
1
2x-1
+2,故有f(x)<2x+2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是定義在R上的奇函數(shù),且y=f(x+
π
2
)
為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述:
①y=f(x)是周期函數(shù)②x=π是它的一條對稱軸;③(-π,0)是它圖象的一個對稱中心;
④當x=
π
2
時,它一定取最大值;其中描述正確的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①函數(shù)y=f(x),x∈R的圖象與直線x=a可能有兩個不同的交點;
②函數(shù)y=log2x2與函數(shù)y=2log2x是相等函數(shù);
③對于指數(shù)函數(shù)y=2x與冪函數(shù)y=x2,總存在x0,當x>x0 時,有2x>x2成立;
④對于函數(shù)y=f(x),x∈[a,b],若有f(a)•f(b)<0,則f(x)在(a,b)內有零點.
⑤已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,則x1+x2=5.
其中正確的序號是
③⑤
③⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•和平區(qū)一模)函數(shù)y=f(x)是定義在[a,b]上的增函數(shù),其中a,b∈R,且0<b<-a,已知y=f(x)無零點,設F(x)=f2(x)+f2(-x),則對于函數(shù)y=F(x)有如下四種說法:①定義域是[-b,b];②最小值是0;③是偶函數(shù);④在定義域內單調遞增.其中正確的說法是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•上海模擬)對于函數(shù)y=f(x)的圖象上任意兩點A(a,f(a)),B(b,f(b)),設點C分
AB
的比為λ(λ>0).若函數(shù)為f(x)=x2(x>0),則直線AB必在曲線AB的上方,且由圖象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函數(shù)為f(x)=log2010x,請分析該函數(shù)的圖象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在區(qū)間[-3,3]上的函數(shù)y=f(x)滿足f(-x)+f(x)=0,對于函數(shù)y=f(x)的圖象上任意兩點(x1,f(x1)),(x2,f(x2))都有(x1-x2)•[f(x1)-f(x2)]<0.若實數(shù)a,b滿足f(a2-2a)+f(2b-b2)≤0,則點(a,b)所在區(qū)域的面積為(  )
A、8B、4C、2D、1

查看答案和解析>>

同步練習冊答案