【題目】已知函數(shù) .
(1)求函數(shù) 的單調區(qū)間和極值;
(2)是否存在實數(shù) ,使得函數(shù) 上的最小值為 ?若存在,求出 的值;若不存在,請說明理由.

【答案】
(1)解:由題意知, .

,解得 ,所以函數(shù) 的單調增區(qū)間是 ;

,解得 ,所以函數(shù) 的單調減區(qū)間是 . 時,函數(shù) 有極小值為


(2)解:由(1)可知,當 時, 單調遞減,當 時, 單調遞增.

①若 ,即 時,函數(shù) 上為增函數(shù),故函數(shù) 的最小值為 ,顯然 ,故不滿足條件.

②若 ,即 時,函數(shù) 上為減函數(shù),在 上為增函數(shù),故函數(shù) 的最小值為 ,即 ,解得 ,而 ,故不滿足條件.

③若 ,即 時,函數(shù) 在在 上為減函數(shù),故函數(shù) 的最小值為 ,即 ,而 不滿足條件,綜上所述,這樣的 不存在


【解析】(1)根據(jù)題意求出原函數(shù)的導函數(shù)再利用導函數(shù)的正負得出原函數(shù)的增減性。(2)首先求出原函數(shù)的導函數(shù)由導函數(shù)大于零解出x的取值范圍然后對a分三種情況討論,再利用f ( x ) 在 [ 1 , e ] 上的最小值為 0求出a的值即可。
【考點精析】解答此題的關鍵在于理解利用導數(shù)研究函數(shù)的單調性的相關知識,掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減,以及對函數(shù)的極值與導數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,且.

(1)當時,寫出的通項公式(直接寫出答案,無需過程);

(2)求最小整數(shù),使得當時, 是單調遞增數(shù)列;

(3)是否存在使得是等比數(shù)列?若存在請求出;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,圓C的方程為ρ=2 sin ,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為 (t為參數(shù)),判斷直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用一些棱長是的小正方體堆放成一個幾何體,其正視圖和俯視圖如圖所示,則這個幾何體的體積最多是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗(噸標準煤)的幾組對照數(shù)據(jù),

1)求, ,

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

3)已知該廠技動前100噸甲產品的生產能耗為90噸標準煤.試根據(jù)(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?

已知 .

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某種設備的使用年限 (年)與所支出的維修費用 (萬元)有如下統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

已知, .

,

(1)求, ;

(2) 具有線性相關關系,求出線性回歸方程;

(3)估計使用年限為10年時,維修費用約是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】德國數(shù)學家科拉茨1937年提出一個著名的猜想:任給一個正整數(shù) ,如果 是偶數(shù),就將它減半(即 );如果 是奇數(shù),則將它乘3加1(即 ),不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到1.對于科拉茨猜想,目前誰也不能證明。也不能否定,現(xiàn)在請你研究:如果對正整數(shù) (首項)按照上述規(guī)則旅行變換后的第9項為1(注:1可以多次出現(xiàn)),則 的所有不同值的個數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,∠A,B,C的對邊分別為, , ,若,

(1)求∠B的大;

(2) ,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】條件 ;條件 :直線 與圓 相切,則 的( )
A.充分必要條件
B.必要不充分條件
C.充分不必要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案