【題目】條件 ;條件 :直線 與圓 相切,則 是 的( )
A.充分必要條件
B.必要不充分條件
C.充分不必要條件
D.既不充分也不必要條件
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù) 的單調(diào)區(qū)間和極值;
(2)是否存在實(shí)數(shù) ,使得函數(shù) 在 上的最小值為 ?若存在,求出 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用 (基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時,實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)是與上一年度車輛發(fā)生道路交通安全違法行為或者道路交通事故的情況相聯(lián)系的.交強(qiáng)險(xiǎn)第二年價(jià)格計(jì)算公式具體如下:交強(qiáng)險(xiǎn)最終保費(fèi)基準(zhǔn)保費(fèi)(浮動比率).發(fā)生交通事故的次數(shù)越多,出險(xiǎn)次數(shù)的就越多,費(fèi)率也就越髙,具體浮動情況如下表:
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,為此搜集并整理了100輛這一品牌普通6座以下私家車一年內(nèi)的出險(xiǎn)次數(shù),得到下面的柱狀圖:
已知小明家里有一輛該品牌普通6座以下私家車且需要續(xù)保,續(xù)保費(fèi)用為元.
(1)記為事件“”,求的估計(jì)值;
(2)求的平均估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 經(jīng)過點(diǎn) ,其離心率 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設(shè)動直線 與橢圓 相切,切點(diǎn)為 ,且 與直線 相交于點(diǎn) .
試問:在 軸上是否存在一定點(diǎn),使得以 為直徑的圓恒過該定點(diǎn)?若存在,
求出該點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(Ⅰ)已知函數(shù)f(x)=|x+1|+|x﹣a|(a>0),若不等式f(x)≥5的解集為{x|x≤﹣2或x≥3},求a的值;
(Ⅱ) 已知實(shí)數(shù)a,b,c∈R+ , 且a+b+c=m,求證: + + ≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為 、 ,短軸兩個端點(diǎn)為 、 ,且四邊形 是邊長為2的正方形.
(1)求橢圓的方程;
(2)若 、 分別是橢圓長軸的左、右端點(diǎn),動點(diǎn) 滿足 ,連接 ,交橢圓于點(diǎn) .證明: 為定值.
(3)在(2)的條件下,試問 軸上是否存異于點(diǎn) 的定點(diǎn) ,使得以 為直徑的圓恒過直線 、 的交點(diǎn),若存在,求出點(diǎn) 的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量與平行.
(1)求A;
(2)若,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形 ABCD 中,對角線 AC 與 BD 相交于一點(diǎn) O,∠A=60°,將△BDC 沿著 BD 折起得△BDC',連結(jié) AC'.
(Ⅰ)求證:平面 AOC'⊥平面 ABD;
(Ⅱ)若點(diǎn) C'在平面 ABD 上的投影恰好是△ABD 的重心,求直線 CD 與底面 ADC'所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com