已知時有極大值6,在時有極小值,求的值;并求在區(qū)間[-3,3]上的最大值和最小值.

在區(qū)間[-3,3]上,當(dāng)時,;當(dāng)時,

解析試題分析:解:(1)由條件知
  .6分
(2)

x
-3
(-3,-2)
-2
(-2,1)
1
(1,3)
3

 

0

0

 



6




由上表知,在區(qū)間[-3,3]上,當(dāng)時,;當(dāng)時,.
12分
考點:導(dǎo)數(shù)的運用
點評:考查了導(dǎo)數(shù)在研究函數(shù)中的運用,求解函數(shù)的單調(diào)性,以及極值進(jìn)而得到最值,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,
(1)討論的單調(diào)區(qū)間;
(2)若對任意的,且,有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間[0,3]上的最大值與最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若函數(shù)上無零點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值.
(1)求實數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;
(3)證明:對任意的正整數(shù),不等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)(1)當(dāng)時,求的最大值;(2)令,(),其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;(3)當(dāng),,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)和“偽二次函數(shù)” .
(Ⅰ)證明:只要,無論取何值,函數(shù)在定義域內(nèi)不可能總為增函數(shù);
(Ⅱ)在同一函數(shù)圖像上任意取不同兩點A(),B(),線段AB中點為C(),記直線AB的斜率為k.
(1)對于二次函數(shù),求證
(2)對于“偽二次函數(shù)” ,是否有(1)同樣的性質(zhì)?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)).
(1)當(dāng)時,求證:上單調(diào)遞增;
(2)當(dāng)時,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為偶函數(shù),曲線過點(2,5), .
(1)若曲線有斜率為0的切線,求實數(shù)的取值范圍;
(2)若當(dāng)時函數(shù)取得極值,確定的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案