已知函數(shù)).
(1)當(dāng)時,求證:上單調(diào)遞增;
(2)當(dāng)時,求證:.

(1)證明如下(2)證明如下

解析試題分析:解:(1)


遞減,在遞增

上單調(diào)遞增
(2)

當(dāng)此時
當(dāng)時,由(1)可知


當(dāng)時,單調(diào)遞增


上單調(diào)遞增,上單調(diào)遞減


得證.
考點:導(dǎo)數(shù)的應(yīng)用
點評:導(dǎo)數(shù)常應(yīng)用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),函數(shù),
(1)若是函數(shù)的極值點,求的值;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的最值.
(3)是否存在實數(shù),使得函數(shù) 在上為單調(diào)函數(shù),若是,求出的取值范圍,若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知時有極大值6,在時有極小值,求的值;并求在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(1)若對一切恒成立,求的取值范圍;
(2)在函數(shù)的圖像上取定兩點,記直線 的斜率為,證明:存在,使成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若存在極值,求的取值范圍;
(2)若,問是否存在與曲線都相切的直線?若存在,判斷有幾條?并求出公切線方程,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)設(shè),試比較的大;
(2)是否存在常數(shù),使得對任意大于的自然數(shù)都成立?若存在,試求出的值并證明你的結(jié)論;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中
(1)若曲線在點處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若p=2,求曲線處的切線方程;
(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實數(shù)p的取值范圍;
(3)設(shè)函數(shù),若在[1,e]上至少存在一點,使得成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交3元的管理費,預(yù)計當(dāng)每件產(chǎn)品的售價為元(∈[7,11])時,一年的銷售量為萬件.
(1)求分公司一年的利潤(萬元)與每件產(chǎn)品的售價的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價為多少元時,分公司一年的利潤最大,并求出的最大值.

查看答案和解析>>

同步練習(xí)冊答案