【題目】已知函數(shù)f(x)是偶函數(shù),f(x+1)是奇函數(shù),且對任意的x1 , x2∈[0,1],且x1≠x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]<0,設(shè)a=f( ),b=﹣f( ),c=f( ),則下列結(jié)論正確的是( )
A.a>b>c
B.b>a>c
C.b>c>a
D.c>a>b
【答案】B
【解析】解:根據(jù)題意,f(x+1)是奇函數(shù),則函數(shù)f(x)的圖象關(guān)于點(1,0)對稱,
則有f(﹣x)=﹣f(2+x),
又由函數(shù)f(x)是偶函數(shù),則f(x)=f(﹣x),
則f(x)=﹣f(2+x),
則有f(x)=f(x+4),即函數(shù)f(x)的周期為4,
則a=f( )=f(﹣ )=f( ),b=﹣f( )=f( )=f(﹣ )=f( ),
c=f( )=f(﹣ )=f( ),
對任意的x1,x2∈[0,1],且x1≠x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0,
即函數(shù)f(x)在區(qū)間[0,1]上為減函數(shù),
又由 > > ,
則有b>a>c;
故選:B.
【考點精析】掌握奇偶性與單調(diào)性的綜合是解答本題的根本,需要知道奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a2=2,其前n項和Sn滿足: (n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若 ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 5 | ||
女 | 10 | ||
合計 | 50 |
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為 .
(Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整;
(Ⅱ)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃。F(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為ξ,求ξ的分布列,數(shù)學(xué)期望以及方差;大氣污染會引起各種疾病,試淺談日常生活中如何減少大氣污染.
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式K2= 其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)滿足:①對于任意的x∈R,都有f(x+2)=f(x﹣2);②函數(shù)y=f(x+2)是偶函數(shù);③當(dāng)x∈(0,2]時,f(x)=ex﹣ ,a=f(﹣5),b=f( ).c=f( ),則a,b,c的大小關(guān)系是( )
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a和b是任意非零實數(shù).
(1)求 的最小值.
(2)若不等式|2a+b|+|2a﹣b|≥|a|(|2+x|+|2﹣x|)恒成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)購是當(dāng)前民眾購物的新方式,某公司為改進(jìn)營銷方式,隨機(jī)調(diào)查了100名市民,統(tǒng)計其周平均網(wǎng)購的次數(shù),并整理得到如下的頻數(shù)分布直方圖.這100名市民中,年齡不超過40歲的有65人將所抽樣本中周平均網(wǎng)購次數(shù)不小于4次的市民稱為網(wǎng)購迷,且已知其中有5名市民的年齡超過40歲.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯誤的概率不超過0.10的前提下認(rèn)為網(wǎng)購迷與年齡不超過40歲有關(guān)?
網(wǎng)購迷 | 非網(wǎng)購迷 | 合計 | |
年齡不超過40歲 | |||
年齡超過40歲 | |||
合計 |
(2)若從網(wǎng)購迷中任意選取2名,求其中年齡丑啊過40歲的市民人數(shù)ξ的分布列與期望. 附: ;
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.01 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面A1B1C1 , AA1=AC=BC=1,∠ACB=90°,D是A1B1的中點,F(xiàn)是BB1上的點,AB1 , DF交于點E,且AB1⊥DF,則下列結(jié)論中不正確的是( )
A.CE與BC1異面且垂直
B.AB1⊥C1F
C.△C1DF是直角三角形
D.DF的長為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= sin(2x+φ)(|φ|< )的圖象關(guān)于直線x= 對稱,且當(dāng)x1 , x2∈(﹣ ,﹣ ),x1≠x2時,f(x1)=f(x2),則f(x1+x2)等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左右焦點分別為F1 , F2 , P為雙曲線右支上一點(異于右頂點),△PF1F2的內(nèi)切圓與x軸切于點(2,0),過F2作直線l與雙曲線交于A,B兩點,若使|AB|=b2的直線l恰有三條,則雙曲線離心率的取值范圍是( )
A.(1, )
B.(1,2)
C.( ,+∞)
D.(2,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com