【題目】已知定義在R上的函數(shù)y=f(x)滿足:①對于任意的x∈R,都有f(x+2)=f(x﹣2);②函數(shù)y=f(x+2)是偶函數(shù);③當x∈(0,2]時,f(x)=ex ,a=f(﹣5),b=f( ).c=f( ),則a,b,c的大小關系是(
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c

【答案】A
【解析】解:由f(x+2)=f(x﹣2)得f(x+4)=f(x),即函數(shù)的周期是4,

∵函數(shù)y=f(x+2)是偶函數(shù),∴f(﹣x+2)=f(x+2),即函數(shù)關于x=2對稱,

當x∈(0,2]時,f(x)=ex 為增函數(shù),

則f(﹣5)=f(﹣5+8)=f(3)=f(1),

f( )=f( ﹣8)=f( ),

f( )=f( ﹣8)=f( )=f( +2)=f(﹣ +2)=f( ),

∵1< ,∴f(1)<f( )<f( ),

即a<b<c,

故選:A

【考點精析】解答此題的關鍵在于理解奇偶性與單調性的綜合的相關知識,掌握奇函數(shù)在關于原點對稱的區(qū)間上有相同的單調性;偶函數(shù)在關于原點對稱的區(qū)間上有相反的單調性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F(xiàn) 是棱 PA上的一個動點,E為PD的中點.
(Ⅰ)若 AF=1,求證:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 與平面 PCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圖一是四面體ABCD的三視圖,E是AB的中點,F(xiàn)是CD的中點.
(1)求四面體ABCD的體積;
(2)求EF與平面ABC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 (a>b>0)的右焦點為F2(3,0),離心率為e.
(Ⅰ)若 ,求橢圓的方程;
(Ⅱ)設直線y=kx與橢圓相交于A,B兩點,M,N分別為線段AF2 , BF2的中點.若坐標原點O在以MN為直徑的圓上,且 ,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣ax,g(x)= x2﹣lnx﹣
(1)若f(x)和g(x)在同一點處有相同的極值,求實數(shù)a的值;
(2)對于一切x∈(0,+∞),有不等式f(x)≥2xg(x)﹣x2+5x﹣3恒成立,求實數(shù)a的取值范圍;
(3)設G(x)= x2 ﹣g(x),求證:G(x)>

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= +b(a,b∈R)的圖象在點(1,f(1))處的切線方程為y=x﹣1.
(1)求實數(shù)a,b的值及函數(shù)f(x)的單調區(qū)間.
(2)當f(x1)=f(x2)(x1≠x2)時,比較x1+x2與2e(e為自然對數(shù)的底數(shù))的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是偶函數(shù),f(x+1)是奇函數(shù),且對任意的x1 , x2∈[0,1],且x1≠x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]<0,設a=f( ),b=﹣f( ),c=f( ),則下列結論正確的是(
A.a>b>c
B.b>a>c
C.b>c>a
D.c>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,內角A,B,C的對邊分別為a,b,c,且tanA,tanB是關于x的方程x2+(1+p)x+p+2=0的兩個根,c=4.
(1)求角C的大。
(2)求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x﹣
(I)求函數(shù)f(x)的值域;
(II)已知銳角△ABC的兩邊長分別是函數(shù)f(x)的最大值和最小值,且△ABC的外接圓半徑為 ,求△ABC的面積.

查看答案和解析>>

同步練習冊答案